当前位置: 首页 > news >正文

网站建设服务费属于营销推广运营

网站建设服务费属于,营销推广运营,公司网站开发立项文档,建设银行网站安全性分析前言 提醒: 文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。 其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展…

前言

提醒:
文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。
其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展及意见建议,欢迎评论区讨论交流。

文章目录

  • 前言
  • 聚类算法
    • 经典应用场景
    • K-Means 聚类
      • 简单实例(函数库实现)
      • 数学表达
        • K-Means 算法步骤
        • 数学优化目标
        • 收敛性
        • 优点
        • 缺点
      • 手动实现
        • 代码分析


聚类算法

聚类算法在各种领域中有广泛的应用,主要用于发现数据中的自然分组和模式。以下是一些常见的应用场景以及每种算法的优缺点:

经典应用场景

  1. 市场细分:根据消费者的行为和特征,将他们分成不同的群体,以便进行有针对性的营销。

  2. 图像分割: 将图像划分为多个区域或对象,以便进行进一步的分析或处理。

  3. 社交网络分析:识别社交网络中的社区结构。

  4. 文档分类:自动将文档分组到不同的主题或类别中。

  5. 异常检测识别数据中的异常点或异常行为。

  6. 基因表达分析:在生物信息学中,根据基因表达模式对基因进行聚类。

K-Means 聚类

  1. K-Means 聚类
  • 优点
    • 算法简单,容易实现。
    • 计算速度快,适用于大规模数据集。
  • 缺点
    • 需要预先指定簇的数量 K K K
    • 对于初始中心点选择敏感。
    • 只能找到球状簇,无法处理非凸形状的簇。
    • 对噪声和异常值敏感。

简单实例(函数库实现)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
# 生成数据
X = np.random.rand(100, 2)
# K-Means 聚类
kmeans = KMeans(n_clusters=3)
kmeans.fit(X)
labels = kmeans.labels_
# 可视化
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], color='red')
plt.title('K-Means Clustering')
plt.show()

X数据分布:
在这里插入图片描述
代码运行结果:
在这里插入图片描述

数学表达

K-Means 聚类是一种常用的无监督学习算法,目的是将数据分为 K K K 个簇,以最小化簇内数据点与簇中心的方差之和。下面是对
K-Means 聚类算法的详细介绍,包括其数学公式和步骤。

K-Means 算法步骤
  1. 初始化

    从数据集中随机选择 K K K 个点作为初始簇中心(质心),记作 { μ 1 , μ 2 , … , μ K } \{\mu_1, \mu_2, \ldots, \mu_K\} {μ1,μ2,,μK}

  2. 分配数据点

    对于每个数据点 x i \mathbf{x}_i xi,计算其与每个簇中心的距离,将其分配到距离最近的簇中。通常采用欧氏距离作为距离度量:

    assign  x i to cluster  j = arg ⁡ min ⁡ k ∥ x i − μ k ∥ 2 \text{assign } \mathbf{x}_i \text{ to cluster } j = \arg\min_{k} \|\mathbf{x}_i - \mu_k\|^2 assign xi to cluster j=argkminxiμk2

  3. 更新簇中心

    对于每个簇 j j j,计算簇中所有数据点的均值作为新的簇中心:

    μ j = 1 N j ∑ x i ∈ C j x i \mu_j = \frac{1}{N_j} \sum_{\mathbf{x}_i \in C_j} \mathbf{x}_i μj=Nj1xiCjxi

    其中 C j C_j Cj 表示簇 j j j 中的所有数据点, N j N_j Nj 是簇 j j j 中的点的数量。

  4. 重复

    重复步骤 2 和步骤 3,直到簇中心不再发生变化或达到预设的迭代次数。

数学优化目标

K-Means 聚类的目标是最小化所有数据点到其所属簇中心的距离平方和。其优化目标函数为:

J = ∑ j = 1 K ∑ x i ∈ C j ∥ x i − μ j ∥ 2 J = \sum_{j=1}^{K} \sum_{\mathbf{x}_i \in C_j} \|\mathbf{x}_i - \mu_j\|^2 J=j=1KxiCjxiμj2

这里, J J J 是代价函数,表示簇内平方误差和。

收敛性

K-Means 算法通过交替优化分配和更新步骤最终收敛,因为每一步都使得代价函数 J J J单调递减。然而,算法可能收敛到局部最小值,因此初始化方式对最终结果有较大影响。

优点
  • 实现简单,计算速度快。
  • 在簇形状是凸的、簇的大小相似的情况下效果较好。
缺点
  • 选择 K K K 值比较困难,通常需要通过经验或使用评估指标(如肘部法则、轮廓系数)来选择。
  • 对初始值敏感,可能导致收敛到局部最优。
  • 适用于凸形簇,对于不同大小和密度的簇效果不好。
  • 对噪声和孤立点敏感。

K-Means 聚类是一种简单有效的聚类方法,广泛应用于各种实际问题,但在使用中需注意其局限性和对参数选择的要求。

手动实现

import numpy as npdef initialize_centroids(X, K):# 从数据集中随机选择K个样本作为初始质心indices = np.random.choice(X.shape[0], K, replace=False)centroids = X[indices]return centroidsdef assign_clusters(X, centroids):# 计算每个样本到每个质心的距离,并将样本分配到最近的质心distances = np.sqrt(((X - centroids[:, np.newaxis])**2).sum(axis=2))return np.argmin(distances, axis=0)def update_centroids(X, labels, K):# 根据分配结果更新质心为每个簇中所有样本的均值centroids = np.array([X[labels == k].mean(axis=0) for k in range(K)])return centroidsdef kmeans(X, K, max_iters=100, tol=1e-4):# 初始化质心centroids = initialize_centroids(X, K)for i in range(max_iters):# 分配样本到最近的质心labels = assign_clusters(X, centroids)# 计算新的质心new_centroids = update_centroids(X, labels, K)# 检查质心是否收敛if np.all(np.abs(new_centroids - centroids) < tol):breakcentroids = new_centroidsreturn labels, centroids
# 示例用法
if __name__ == "__main__":# 生成一些测试数据X = np.array([[1.0, 2.0], [1.5, 1.8], [5.0, 8.0], [8.0, 8.0], [1.0, 0.6], [9.0, 11.0],[8.0, 2.0], [10.0, 2.0], [9.0, 3.0]])# 设定簇的数量K = 3# 运行K-Means算法labels, centroids = kmeans(X, K)print("Cluster labels:", labels)print("Centroids:", centroids)
代码分析

1. np.random.choice(X.shape[0], K, replace=False)
numpy.random.choice(a, size=None, replace=True, p=None)
np.random.choice 是 NumPy 库中的一个函数,用于从给定的一维数组中生成随机样本。它可以指定样本的数量、是否允许重复选择等参数。
在这里插入图片描述
2. np.sqrt(((X - centroids[:, np.newaxis])**2).sum(axis=2))

  • centroids[:, np.newaxis]: 使用 np.newaxiscentroids 的形状从 (K, n_features) 变为 (K, 1, n_features),这样做是为了实现广播(broadcasting),以便在后续计算中能够对每个质心与每个样本进行逐元素运算。
  • X - centroids[:, np.newaxis]:这个操作会创建一个形状为 (K, n_samples, n_features) 的数组,表示每个质心与每个样本之间的差值。
  • .sum(axis=2):这个操作会对最后一个维度(特征维度)进行求和,结果是一个形状为 (K, n_samples) 的数组,表示每个样本与每个质心之间的特征平方和。
  1. np.argmin(distances, axis=0)
  • np.argmin 是一个NumPy函数,用于找到数组中最小值的索引。
  • axis=0 表示沿着第一个轴(即行)查找最小值。这意味着对每个样本(每列)比较所有质心的距离,找到最小值对应的质心索引。
http://www.tj-hxxt.cn/news/66340.html

相关文章:

  • 做网站按什么收费多少搜索引擎营销题库和答案
  • 本地网站建设java培训
  • 河北项目建设备案网站天津网站推广
  • 网站建设平台 汉龙seo优化招商
  • 做涂鸦的网站百度收录哪些平台比较好
  • 受欢迎的南昌网站建设宁波正规优化seo软件
  • 阿坝州网站制作外贸企业网站制作哪家好
  • 企业整体vi设计seo网络营销推广公司深圳
  • 网站销售怎么样网络营销公司哪家好
  • 网站开发新型技术个人如何注册网址
  • dedecms 网站栏目管理如何建立网站服务器
  • 网站 域名解析错误关键词排名优化是什么意思
  • 卡盟做网站哪家竞价托管专业
  • 幼儿园网站静态模板2023网站推广入口
  • 专做运动品牌的网站9个广州seo推广神技
  • 六安做网站国内免费域名
  • 长沙营销型网站建设百度搜索排行榜
  • 物联网型网站开发河北百度竞价优化
  • 最新网站上海百度推广客服电话
  • 浙江温州疫情最新数据seo建站平台哪家好
  • 详述网站建设的过程免费的网络推广渠道
  • 网站备案编号查询如何设置友情链接
  • 天猫网站是怎么做seo优化的产品宣传方式有哪些
  • 网站后台文章编辑不了线上营销的方式
  • 网站文章内容优化方案建站教程
  • 建设专业网站哪家技术好百度一下京东
  • 国内做博彩网站代理seo排名优化厂家
  • 武汉网站制作定制新站整站快速排名
  • 湖南株洲建设局网站谷歌广告怎么投放
  • 技术外包平台seo外链建设的方法