当前位置: 首页 > news >正文

受欢迎的南昌网站建设宁波正规优化seo软件

受欢迎的南昌网站建设,宁波正规优化seo软件,番禺网站建设设计,肉多各种地方做的网站红黑树一、红黑树的概念二、红黑树的接口2.1 插入三、验证四、源码一、红黑树的概念 红黑树也是一个二叉搜索树,他是通过对任何一条从根到叶子的路径上各个结点着色方式的限制,最长路径长度不超过最短路径长度的 2 倍保持近似平衡。他在每个节点添加了一…

红黑树

  • 一、红黑树的概念
  • 二、红黑树的接口
    • 2.1 插入
  • 三、验证
  • 四、源码

一、红黑树的概念

在这里插入图片描述
红黑树也是一个二叉搜索树,他是通过对任何一条从根到叶子的路径上各个结点着色方式的限制,最长路径长度不超过最短路径长度的 2 倍保持近似平衡。他在每个节点添加了一个变量用来表示颜色 :Black或者Red,为了满足上面的条件,着色必须满足性质:

1️⃣每个结点不是红色就是黑色
2️⃣ 根节点是黑色的
3️⃣ 如果一个节点是红色的,则它的两个孩子结点是黑色的(没有连续的红色节点)
4️⃣ 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
5️⃣ 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

由此可以满足最长路径长度不超过最短路径长度的 2 倍(通过第四点就可以看出)

既然不能保证绝对平衡,那么搜索性能肯定不如AVL树,那么为什么还要有红黑树呢?

首先要知道AVL树保持平衡的方法是频繁的旋转,而红黑树则不需要严格的平衡,会少很多旋转

二、红黑树的接口

红黑树节点定义:
节点需要有个颜色的变量,可以使用枚举的方法:

enum Colour
{RED,BLACK,
};template <class K, class V>
struct RBTreeNode
{RBTreeNode(const pair<K, V>& kv): _kv(kv), _left(nullptr), _right(nullptr), _parent(nullptr), _col(RED){}pair<K, V> _kv;AVLNode<K, V>* _left;AVLNode<K, V>* _right;AVLNode<K, V>* _parent;Colour _col;
};

2.1 插入

我们可以看到节点初始化的时候默认为RED,因为如果要插入BLACK,那么一定会导致错误,不满足对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
所以只能把新节点默认设置为RED,因为如果是红色有可能父节点是黑色,这样就没有出现连续的红色。
总结一下:

插入黑色节点一定有问题,插入红色节点有可能会出问题。

插入的流程根AVL树一样,检查父亲节点,如果是黑就结束,如果是红就要调整红黑树

为了方便说明,cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
首先要知道最主要的是看u
情况一:cur为红,p为红,g为黑,u存在且为红 :
在这里插入图片描述
为什么要看u节点,因为如果cur为红且p为红,那么g一定为黑。所以唯一的变数就为u

它的调整方法为:
在这里插入图片描述
首先p肯定要变黑,而为了使g两边的子树黑节点数目相同,u也要变黑。至于g,我们先把它变红,因为如果这颗树是子树而g还是黑,那么相当于这颗子树的黑节点多了一个,会影响到别的子树。如果g为根那么就把g变为黑。
这里要注意继续往上处理:
把g当成cur,继续向上调整。

举个例子:
在这里插入图片描述
可以看到绿色部分就为上面的抽象图,就这么往上循环改变颜色即可。

情况二:cur为红,p为红,g为黑,u不存在/u为黑
在这里插入图片描述
此时要对u分情况讨论:

1️⃣ u不存在时,那么cur一定是新增节点,因为如果cur不是新增节点,那么cur和p一定有一个节点为黑,这样就不满足黑节点数目相同的条件。

在这里插入图片描述
处理方式就为右单旋
在这里插入图片描述

2️⃣ u存在且为黑
在这里插入图片描述
总结一下:

u不存在则cur是新增节点,u存在那么就是由情况一变换过来的。
情况二的处理方法就是旋转+变色

情况三: cur为红,p为红,g为黑,u不存在/u为黑

情况三与情况二的区别就是情况二是直线,情况三是折线,经过AVL的学习我们知道这种情况要双旋

在这里插入图片描述
情况三也是由其他情况变过来的。
此时我们就需要进行双旋调整红黑树。
在这里插入图片描述
左单旋后变成了情况二,那么按照情况二的方法进行右旋即可。
在这里插入图片描述
以上三种情况的代码如下:

while (parent && parent->_col == RED)
{// 找g 与 uNode* g = parent->_parent;if (parent == g->_left){Node* u = g->_right;// 情况一 u存在且为红if (u && u->_col == RED){parent->_col = u->_col = BLACK;g->_col = RED;// 继续往上处理cur = g;parent = cur->_parent;}else // 情况二或情况三{if (cur == parent->_left)// 情况二{//   g//  p// cRotateR(g);parent->_col = BLACK;g->_col = RED;}else// 情况三{//  g// p//  cRotateL(parent);RotateR(g);//   c// p   gcur->_col = BLACK;g->_col = RED;}break;}}else{Node* u = g->_left;// 情况一if (u && u->_col == RED){u->_col = parent->_col = BLACK;g->_col = RED;cur = g;parent = cur->_parent;}else{// 情况二// g//  p//   cif (cur == parent->_right){RotateL(g);parent->_col = BLACK;g->_col = RED;}else// 情况三{// g//  p// cRotateR(parent);RotateL(g);cur->_col = BLACK;g->_col = RED;}break;}}
}
// 上面有可能把_root的颜色变为红
_root->_col = BLACK;
return true;
}

三、验证

想要验证是否是红黑树,首先要保证是搜索树(中序遍历有序)。
其次还要判断根节点是否为黑,是否有两个红的相连(检查红节点的父亲),每条路径上的黑节点数目相同(随便找一条路径测出标准值)。

怎么测每条路径的黑节点数目是否相同?

测一条路径的黑节点数目当作标准值,递归过程中遇到黑节点就记录,到空说明该路径走完,比对标准值,如果不同就返回false。

bool _IsBalance(Node* root, int i, int flag)
{if (root == nullptr){if (i != flag){cout << "errno: 左右子树黑色节点数目不同" << endl;return false;}return true;}// 红节点时判断父亲if (root->_col == RED){if (root->_parent->_col == RED){cout << "errno: 红-红" << endl;return false;}}if (root->_col == BLACK){i++;}return _IsBalance(root->_left, i, flag) && _IsBalance(root->_right, i, flag);
}bool IsBalance()
{if (_root == nullptr){return true;}if (_root->_col != BLACK){return false;}// 找标准值Node* cur = _root;int flag = 0;while (cur){if (cur->_col == BLACK){flag++;}cur = cur->_left;}int i = 0;return _IsBalance(_root, i, flag);
}

四、源码

#pragma once
#include <iostream>
#include <cstdlib>
#include <cassert>
#include <string>using namespace std;enum Colour
{RED,BLACK,
};template <class K, class V>
struct RBTreeNode
{RBTreeNode(const pair<K, V>& kv): _kv(kv), _left(nullptr), _right(nullptr), _parent(nullptr), _col(RED){}pair<K, V> _kv;RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;Colour _col;
};template <class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public:bool insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else return false;}cur = new Node(kv);if (kv.first < parent->_kv.first){parent->_left = cur;}else{parent->_right = cur;}cur->_parent = parent;while (parent && parent->_col == RED){// 找g 与 uNode* g = parent->_parent;if (parent == g->_left){Node* u = g->_right;// 情况一 u存在且为红if (u && u->_col == RED){parent->_col = u->_col = BLACK;g->_col = RED;// 继续往上处理cur = g;parent = cur->_parent;}else // 情况二或情况三{if (cur == parent->_left)// 情况二{//   g//  p// cRotateR(g);parent->_col = BLACK;g->_col = RED;}else// 情况三{//  g// p//  cRotateL(parent);RotateR(g);//   c// p   gcur->_col = BLACK;g->_col = RED;}break;}}else{Node* u = g->_left;// 情况一if (u && u->_col == RED){u->_col = parent->_col = BLACK;g->_col = RED;cur = g;parent = cur->_parent;}else{// 情况二// g//  p//   cif (cur == parent->_right){RotateL(g);parent->_col = BLACK;g->_col = RED;}else// 情况三{// g//  p// cRotateR(parent);RotateL(g);cur->_col = BLACK;g->_col = RED;}break;}}}// 上面有可能把_root的颜色变为红_root->_col = BLACK;return true;}void RotateL(Node* parent){Node* top = parent->_parent;Node* right = parent->_right;parent->_right = right->_left;if (right->_left) right->_left->_parent = parent;right->_left = parent;parent->_parent = right;if (top)// 子树{if (parent == top->_left) top->_left = right;else top->_right = right;right->_parent = top;}else// 完整的树{_root = right;_root->_parent = nullptr;}}void RotateR(Node* parent){Node* top = parent->_parent;Node* left = parent->_left;Node* leftR = left->_right;parent->_left = leftR;if (leftR) leftR->_parent = parent;left->_right = parent;parent->_parent = left;if (top){if (parent == top->_left) top->_left = left;else top->_right = left;left->_parent = top;}else{_root = left;_root->_parent = nullptr;}}void _Inorder(Node* root){if (root == nullptr)return;_Inorder(root->_left);cout << root->_kv.first << "<=>" << root->_kv.second << endl;_Inorder(root->_right);}void Inorder(){_Inorder(_root);}bool _IsBalance(Node* root, int i, int flag){if (root == nullptr){if (i != flag){cout << "errno: 左右子树黑色节点数目不同" << endl;return false;}return true;}// 红节点时判断父亲if (root->_col == RED){if (root->_parent->_col == RED){cout << "errno: 红-红" << endl;return false;}}if (root->_col == BLACK){i++;}return _IsBalance(root->_left, i, flag) && _IsBalance(root->_right, i, flag);}bool IsBalance(){if (_root == nullptr){return true;}if (_root->_col != BLACK){return false;}// 找标准值Node* cur = _root;int flag = 0;while (cur){if (cur->_col == BLACK){flag++;}cur = cur->_left;}int i = 0;return _IsBalance(_root, i, flag);}private:Node* _root = nullptr;
};void test()
{RBTree<int, int> bb;const int N = 10000;srand(time(0));for (int i = 0; i < N; i++){size_t x = rand();bb.insert(make_pair(x, x));}/*int a[] = { 16, 3, 7, 11, 9, 26, 18, 14};for (auto e : a){bb.insert(make_pair(e, e));}*/cout << bb.IsBalance();
}
http://www.tj-hxxt.cn/news/66333.html

相关文章:

  • 阿坝州网站制作外贸企业网站制作哪家好
  • 企业整体vi设计seo网络营销推广公司深圳
  • 网站销售怎么样网络营销公司哪家好
  • 网站开发新型技术个人如何注册网址
  • dedecms 网站栏目管理如何建立网站服务器
  • 网站 域名解析错误关键词排名优化是什么意思
  • 卡盟做网站哪家竞价托管专业
  • 幼儿园网站静态模板2023网站推广入口
  • 专做运动品牌的网站9个广州seo推广神技
  • 六安做网站国内免费域名
  • 长沙营销型网站建设百度搜索排行榜
  • 物联网型网站开发河北百度竞价优化
  • 最新网站上海百度推广客服电话
  • 浙江温州疫情最新数据seo建站平台哪家好
  • 详述网站建设的过程免费的网络推广渠道
  • 网站备案编号查询如何设置友情链接
  • 天猫网站是怎么做seo优化的产品宣传方式有哪些
  • 网站后台文章编辑不了线上营销的方式
  • 网站文章内容优化方案建站教程
  • 建设专业网站哪家技术好百度一下京东
  • 国内做博彩网站代理seo排名优化厂家
  • 武汉网站制作定制新站整站快速排名
  • 湖南株洲建设局网站谷歌广告怎么投放
  • 技术外包平台seo外链建设的方法
  • 北京自助企业建站模板网络服务器配置与管理
  • 菏泽网站制作贴吧引流推广
  • 免费做试卷的网站线上推广策略
  • 可以自己做网站吗app宣传推广方案
  • 做公司网站都需要哪些东西宁波外贸网站推广优化
  • 莆田网站制作计划活动推广方式都有哪些