当前位置: 首页 > news >正文

建站语言网络营销方式有哪几种

建站语言,网络营销方式有哪几种,万能影视免费观看app,开发触屏版网站标签算法的时间复杂度和空间复杂度 1.算法效率1.1 如何衡量一个算法的好坏1.2 算法的复杂度 2.时间复杂度2.1 时间复杂度的概念2.2 大O的渐进表示法2.3常见时间复杂度计算举例 3.空间复杂度4. 常见复杂度对比 1.算法效率 1.1 如何衡量一个算法的好坏 如何衡量一个算法的好坏呢&am…

算法的时间复杂度和空间复杂度

    • 1.算法效率
      • 1.1 如何衡量一个算法的好坏
      • 1.2 算法的复杂度
    • 2.时间复杂度
      • 2.1 时间复杂度的概念
      • 2.2 大O的渐进表示法
      • 2.3常见时间复杂度计算举例
    • 3.空间复杂度
    • 4. 常见复杂度对比

1.算法效率

1.1 如何衡量一个算法的好坏

如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:

long long Fib(int N)
{if (N < 3)return 1;return Fib(N - 1) + Fib(N - 2);
}

斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?

1.2 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

2.时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{int count = 0;for (int i = 0; i < N; ++i){for (int j = 0; j < N; ++j){++count;}}for (int k = 0; k < 2 * N; ++k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

在这里插入图片描述
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法

2.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

2.3常见时间复杂度计算举例

实例一:

// 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N; ++k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

O(N)

实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)

实例二:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++k){++count;}for (int k = 0; k < N; ++k){++count;}printf("%d\n", count);
}

O(N+M)

实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
在这里插入图片描述

实例三:

// 计算Func4的时间复杂度?
void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++k){++count;}printf("%d\n", count);
}

O(1)

实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)
在这里插入图片描述

实例四:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );//str中查找一个字符串

实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
在这里插入图片描述

实例五:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

O(N^2)

实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最
坏,时间复杂度为 O(N^2)
在这里插入图片描述

实例六:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n - 1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end - begin) >> 1);if (a[mid] < x)begin = mid + 1;else if (a[mid] > x)end = mid - 1;elsereturn mid;}return -1;
}

O(logN)

实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底
数为2,对数为N。有些地方会写成lgN。(建议通过折纸查找的方式讲解logN是怎么计算出来的)
在这里插入图片描述
在这里插入图片描述

实例七:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if (0 == N)return 1;return Fac(N - 1) * N;
}

O(N)

实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。
在这里插入图片描述
总结:递归算法时间复杂度是多次调用次数累加

实例八:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if (N < 3)return 1;return Fib(N - 1) + Fib(N - 2);
}

实例8通过计算分析发现基本操作递归了2^N 次,时间复杂度为O(2^N)。(建议画图递归栈帧的二叉树讲解)
在这里插入图片描述
在这里插入图片描述
补:在这里插入图片描述

3.空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因
此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

案例一:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

实例1使用了常数个额外空间(int n,int exchange,int end),所以空间复杂度为 O(1)

实列二:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if (n == 0)return NULL;long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n; ++i){fibArray[i] = fibArray[i - 1] + fibArray[i - 2];}return fibArray;
}

实例2动态开辟了N个空间,空间复杂度为 O(N)

实例三:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if (N == 0)return 1;return Fac(N - 1) * N;
}

在这里插入图片描述

实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)
时间一去不复返,空间可重复利用->了解函数栈帧

4. 常见复杂度对比

一般算法常见的复杂度如下
在这里插入图片描述
在这里插入图片描述

💘不知不觉,【数据结构初阶】算法的时间复杂度和空间复杂度以告一段落。通读全文的你肯定收获满满,让我们继续为数据结构学习共同奋进!!!

http://www.tj-hxxt.cn/news/97878.html

相关文章:

  • 网站建设的论文信息流广告推广
  • 网站优化毕业设计营销型网站内容
  • 北京 响应式网站建设百度官网认证价格
  • 建设一个网站的所有代码广州网站建设方案维护
  • 搜网站网24小时最新国际新闻
  • 建设好的网站怎么分享百度投放广告流程
  • 百度可以做网站吗网络舆情管理
  • 古风网站的关于我们页面怎么做常见的网络推广方式
  • 一个专门做特产的网站网络广告推广方法
  • 网站建设截图河南网站排名优化
  • 株洲市网站建设山东做网站公司
  • 网站主页面布局怎么做second是什么意思
  • 网站做支付按流量付费吗章鱼磁力链接引擎
  • 网站被降权的原因凌云seo博客
  • 重庆网站制作一般需要多少钱色盲测试图及答案大全
  • php网站项目厦门seo网站管理
  • 仿《快乐麻花》网站源码2023b站免费推广入口游戏
  • 论学院网站建设项目的进度管理制度百度搜索广告
  • 网站域名查询工具建网站找哪个平台好呢
  • 做销售的如何在网站如何seo搜索引擎优化
  • 萌兔网站做代销可靠吗成都网站建设系统
  • 精仿小米社区wordpress模板seo怎么做
  • 网站建设的目标是西安楼市最新房价
  • 中关村在线app网站seo优化有哪些方面
  • 杭州网站做的好公司哪家好公司网络营销推广方案
  • 网站排名易下拉刷词抖音指数
  • 广东省住房和城乡建设局网站seo推广优化
  • 做网站界面用的软件教育机构
  • 哪些网站可以做图片链接谷歌应用商店
  • 企业型网站网络营销师怎么考