当前位置: 首页 > news >正文

百度不收录的网站优化关键词哪家好

百度不收录的网站,优化关键词哪家好,宁夏网站开发设计说明书,扬州天达建设集团有限公司网站本文是《A-VAX: Applying Quality by Design to Vaccines》第七个研究的R语言解决方案。 使用带两个中心点的二水平析因设计。运行10次实验。结果是分辨度为III的设计。 A <- c(25,25,15,15,15,25,25,20,15,20) B <- c(12,8,8,12,8,12,8,10,12,10) C <- c(35,15,15…

本文是《A-VAX: Applying Quality by Design to Vaccines》第七个研究的R语言解决方案。

使用带两个中心点的二水平析因设计。运行10次实验。结果是分辨度为III的设计。

A <- c(25,25,15,15,15,25,25,20,15,20)

B <- c(12,8,8,12,8,12,8,10,12,10)

C <- c(35,15,15,15,35,15,35,25,35,25)

D <- c(250,250,250,150,150,150,150,200,250,200)

E <- c(20,20,10,20,20,10,10,15,10,15)

F <- c(24,12,24,12,24,24,12,18,12,18)

A <- c(1,1,-1,-1,-1,1,1,0,-1,0)

B <- c(1,-1,-1,1,-1,1,-1,0,1,0)

C <- c(1,-1,-1,-1,1,-1,1,0,1,0)

D <- c(1,1,1,-1,-1,-1,-1,0,1,0)

E <- c(1,1,-1,1,1,-1,-1,0,-1,0)

F <- c(1,-1,1,-1,1,1,-1,0,-1,0)

y1<-c(11.58,12.78,7.58,7.13,8.31,10.19,13.33,9.4,7.35,11.24)

y2<-c(0.59,0.49,0.24,0.28,0.26,0.25,0.58,0.49,0.22,0.40)

y3<-c(54.36,31.31,27.57,48.32,26.85,59.2,32.84,41.21,46.24,37.73)

y4<-c(53,45,44,35,57,35,53,47,58,56)

study6<- data.frame (A=A,B=B,C=C,D=D,E=E,F=F)

#aliases( lm( y1~ (.)^4, data = study6))

mod1 <- lm( y1 ~ (.), data = study6)

summary(mod1)

> summary(mod1)

Call:

lm.default(formula = y1 ~ (.), data = study6)

Residuals:

      1       2       3       4       5       6       7       8       9      10

 0.0160 -0.2315  0.0160  0.0160 -0.2315 -0.2315  0.0160 -0.4890 -0.2315  1.3510

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)  9.88900    0.27566  35.873 4.76e-05 ***

A            2.18875    0.30820   7.102  0.00574 **

B           -0.71875    0.30820  -2.332  0.10195   

C            0.36125    0.30820   1.172  0.32576   

D            0.04125    0.30820   0.134  0.90200   

E            0.16875    0.30820   0.548  0.62212   

F           -0.36625    0.30820  -1.188  0.32020   

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8717 on 3 degrees of freedom

Multiple R-squared:  0.9516,    Adjusted R-squared:  0.8548

F-statistic: 9.829 on 6 and 3 DF,  p-value: 0.04393

mod2 <- lm( y2 ~ (.), data = study6)

summary(mod2)

> summary(mod2)

Call:

lm.default(formula = y2 ~ (.), data = study6)

Residuals:

      1       2       3       4       5       6       7       8       9      10

 0.0425 -0.0750  0.0425  0.0425 -0.0750 -0.0750  0.0425  0.1100 -0.0750  0.0200

Coefficients:

            Estimate Std. Error t value Pr(>|t|)  

(Intercept)  0.38000    0.03752  10.129  0.00205 **

A            0.11375    0.04194   2.712  0.07305 .

B           -0.02875    0.04194  -0.685  0.54229  

C            0.04875    0.04194   1.162  0.32920  

D            0.02125    0.04194   0.507  0.64731  

E            0.04125    0.04194   0.983  0.39791  

F           -0.02875    0.04194  -0.685  0.54229  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1186 on 3 degrees of freedom

Multiple R-squared:  0.7837,    Adjusted R-squared:  0.3511

F-statistic: 1.811 on 6 and 3 DF,  p-value: 0.3347

mod3 <- lm( y3 ~ (.), data = study6)

summary(mod3)

> summary(mod3)

Call:

lm.default(formula = y3 ~ (.), data = study6)

Residuals:

      1       2       3       4       5       6       7       8       9      10

 0.2095  0.3370  0.2095  0.2095  0.3370  0.3370  0.2095  0.6470  0.3370 -2.8330

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)  40.5630     0.5500  73.754 5.49e-06 ***

A             3.5913     0.6149   5.840 0.010002 * 

B            11.1938     0.6149  18.204 0.000362 ***

C            -0.7637     0.6149  -1.242 0.302458   

D            -0.9662     0.6149  -1.571 0.214127   

E            -0.6262     0.6149  -1.018 0.383437   

F             1.1588     0.6149   1.884 0.156005   

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.739 on 3 degrees of freedom

Multiple R-squared:  0.992,     Adjusted R-squared:  0.9761

F-statistic: 62.35 on 6 and 3 DF,  p-value: 0.003075

mod4 <- lm( y4 ~ (.), data = study6)

summary(mod4)

> summary(mod4)

Call:

lm.default(formula = y4 ~ (.), data = study6)

Residuals:

    1     2     3     4     5     6     7     8     9    10

-2.05  0.45 -2.05 -2.05  0.45  0.45 -2.05 -1.30  0.45  7.70

Coefficients:

              Estimate Std. Error t value Pr(>|t|)   

(Intercept)  4.830e+01  1.619e+00  29.840 8.27e-05 ***

A           -1.000e+00  1.810e+00  -0.553   0.6191   

B           -2.250e+00  1.810e+00  -1.243   0.3021   

C            7.750e+00  1.810e+00   4.282   0.0234 * 

D            2.500e+00  1.810e+00   1.381   0.2610   

E            2.728e-15  1.810e+00   0.000   1.0000   

F           -2.500e-01  1.810e+00  -0.138   0.8989   

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.119 on 3 degrees of freedom

Multiple R-squared:  0.8806,    Adjusted R-squared:  0.6417

  1. statistic: 3.686 on 6 and 3 DF,  p-value: 0.1558

http://www.tj-hxxt.cn/news/88180.html

相关文章:

  • 联通公司网站谁做的吴忠seo
  • 网站解决方案一个关键词要刷多久
  • 北京外贸行业网站建设如何统计网站访问量
  • 永康住房和城乡建设部网站必应搜索引擎
  • seo是干啥的百度关键字优化价格
  • 垂直网站建设关键词排名查询网站
  • 有什么好的建站公司西安seo网站建设
  • 外贸网站推广和建站网站宣传方法
  • wordpress外网排版问题seo排名赚app官网
  • 团购网站app制作seo网站优化怎么做
  • 聊城集团网站建设价格企业网站推广的方法有哪些
  • 网站开发需要哪些知识学生个人网页优秀模板
  • 销售网站开发cms快速建站
  • 网站中点击链接怎么做优秀企业网站模板
  • 做的很好的画册网站宁波网站推广方案
  • 免费的求职简历模板网站微信管理系统平台
  • 淘宝客网站应该怎么做搜关键词网站
  • 一 网站建设的目的和目标seo索引擎优化
  • 免费建站哪里找搜索引擎优化seo专员招聘
  • 专做机票网站的软件公司产品运营主要做什么
  • 肯德基网站建设seo排名赚app多久了
  • 宝鸡商城网站开发什么是交换链接
  • 合肥 网站建设2345网址导航电脑版官网
  • 廊坊专业网站建设网上教育培训机构排名
  • 西安企业建站公司如何创建个人网页
  • 网站一跳率重庆网站推广联系方式
  • 麻城网站制作公司河北企业网站建设
  • 网站开发使用软件公司网站页面设计
  • 网站建设基础教程视频网络广告的概念
  • 自己做游戏的网站电商从零基础怎么学