当前位置: 首页 > news >正文

ip设计网站常见的营销手段

ip设计网站,常见的营销手段,营销型网站深度网,做的最好自考网站是哪个回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现TCN-BiLSTM时间卷积…

回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

1

2
3
4
5

6
7

基本介绍

1.MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测;
2.运行环境为Matlab2021b;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,excel数据,前7列输入,最后1列输出,MainTCN_BiLSTMNN.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出RMSE、MAE、MAPE多指标评价。

模型描述

由于TCN 具有扩张因果卷积结构,拥有突出的特征提取能力,因此可对原始特征进行融合获得高维的抽象特征,加强了对特征信息的挖掘。而
BiLSTM 网络具有强大的时序预测能力,将TCN 和BiLSTM网络结合,通过TCN 特征提取后输入至BiLSTM 网络,提高了BiLSTM网络记忆单元的处理效率,使得预测模型更有效地学习时间序列的复杂交互关系。因此,本文搭建了TCN-BiLSTM 预测模型。

TCN-BiLSTM是一种将时间卷积神经网络(TCN)和双向长短期记忆神经网络(BiLSTM)结合在一起的神经网络模型。TCN是一种能够处理序列数据的卷积神经网络,它能够捕捉到序列中的长期依赖关系。BiLSTM则是一种具有记忆单元的递归神经网络,它能够处理序列数据中的短期和长期依赖。
TCN-BiLSTM模型的输入可以是多个序列,每个序列可以是不同的特征或变量。例如,如果我们想预测某个城市未来一周的平均温度,我们可以将过去一段时间内的温度、湿度、气压等多个变量作为输入序列。模型的输出是一个值,即未来某个时间点的平均温度。
在TCN-BiLSTM中,时间卷积层用于捕捉序列中的长期依赖关系,BiLSTM层用于处理序列中的短期和长期依赖。多个输入序列被合并成一个张量,然后送入TCN-BiLSTM网络进行训练。在训练过程中,模型优化目标是最小化预测输出与真实值之间的差距。
TCN-BiLSTM模型在时间序列预测和回归问题上表现良好,特别是对于长期依赖的序列数据。它可以被用于许多应用场景,例如股票价格预测、交通流量预测等。

程序设计

  • 完整源码和数据获取方式1:私信博主回复MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

http://www.tj-hxxt.cn/news/72335.html

相关文章:

  • 网站建设网页开发广告软文范例大全100字
  • 做网站怎么在图片上加文字西安网站建设公司排名
  • 宜昌网站建设兼职百度图片搜索图片识别
  • 做预算需要关注哪些政府网站全网营销是什么
  • 做义工的靠谱网站阳东网站seo
  • 哪里做网站一站式自媒体服务平台
  • 湖州网站开发直通车推广技巧
  • 扬州做网站设计网站推荐
  • 做外贸怎样免费登录外国网站免费域名申请
  • 网站设计的步骤产品营销方案
  • 做的新网站到首页又下去了广州优化防控措施
  • wordpress在线考试信阳网站seo
  • 深圳市网站建设公司设计公司关键词优化如何
  • 先做网站先备案怎么进行推广
  • 怎么建设网站上海正规seo公司
  • 网站建设化妆品的目录今天的国内新闻
  • 电商网站的二级菜单怎么做免费企业网站管理系统
  • 网页怎么做成网站百度seo排名如何提升
  • dw网页制作教程完整版seo超级外链发布
  • 广东今科网站建设网络营销系统
  • 部门网站建设和维护百度竞价排名公式
  • 教务在线网站开发报告书网络舆情处理公司
  • dw 如何做自适应网站学校seo推广培训班
  • 网站维护中怎么解决国内免费ip地址
  • 简约大方自助建站模板百度地图导航
  • 大连手机自适应网站建设维护新手怎么入行seo
  • wordpress多站点必备插件图片外链上传网站
  • 广州市白云区建设局 网站国通快速建站
  • 牡丹江做网站建设站长工具大全集
  • 静安网站建设哪里有seo搜索引擎优化内容