当前位置: 首页 > news >正文

做网站和做微信小程序百度推广咨询

做网站和做微信小程序,百度推广咨询,上饶百度网站建设,中企动力做销售的感受目录 1、动态规划简介 2、算法实战应用【leetcode】 2.1 题一:第N个泰波那契数 2.1.1 算法原理 2.1.2 算法代码 2.1.3 空间优化原理——滚动数组 2.1.4 算法代码——空间优化版本 2.2 题二:三步问题 2.2.1 算法原理 2.2.2 算法代码 2.3 题二&a…

目录

1、动态规划简介

2、算法实战应用【leetcode】

2.1 题一:第N个泰波那契数

2.1.1 算法原理

2.1.2 算法代码

2.1.3 空间优化原理——滚动数组

2.1.4 算法代码——空间优化版本

2.2 题二:三步问题

 2.2.1 算法原理

2.2.2 算法代码

2.3 题二:使用最小花费爬楼梯

2.3.1 算法原理【解法一】

2.3.2 算法代码【解法一】

2.3.3 算法原理【解法二】

​2.3.4 算法代码【解法二】

2.4 题三:解码方法

2.4.1 算法原理

2.4.2 算法代码

2.4.3 初始化技巧

2.4.4 算法代码——初始化技巧使用


1、动态规划简介

‌动态规划(Dynamic Programming, DP)是运筹学的一个分支,用于求解最优化问题。

在解决问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法(自底向上)正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,在以后尽可能多地利用这些子问题的解。

动态规划算法,一般包含以下几个主要步骤:

  1. 状态表示:dp表中的值所表示的含义。一般由 经验+题目要求 得出。对于一维的dp表,dp[i]通常有这两种表示形式(由经验得出):①:以i位置为结尾,......;②:以i位置为起点,......;而....就是需要结合题目来得出的。
  2. 状态转移方程:就是dp[i]是怎么来的。dp[i]通常由其相邻的其他状态经过公式计算得出,状态转移方程就是这个公式。
  3. 初始化:确保在填dp表的过程中不越界。
  4. 填表顺序为了在填写当前状态的时候,所需要的其他相邻状态已经计算得出了。
  5. 返回值:结合题目要求。

在此过程中,我认为确定状态表示是最重要的一点,而确定状态转移方程是最难的一点。 

2、算法实战应用【leetcode】

2.1 题一:第N个泰波那契数

. - 力扣(LeetCode)

2.1.1 算法原理

对于一维dp,状态表示通常由 经验+题目要求 得出,本题很明显,表示第i个泰波那契数的值;同时状态转移方程题目也是贴心的给出了。

  • 状态表示dp[i]:第i个泰波那契数的值
  • 状态转移方程:dp[i] = dp[i-1] + dp[i-2] + dp[i-3]
  • 初始化:dp[0] = 0; dp[1] = dp[2] = 1;
  • 填表顺序:从左往右
  • 返回值:dp[n]

2.1.2 算法代码

class Solution {public int tribonacci(int n) {if(n == 0) return 0;if(n == 1 || n == 2) return 1;int[] dp = new int[n + 1];dp[0] = 0; dp[1] = dp[2] = 1;for(int i = 3; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];}return dp[n];}
}

2.1.3 空间优化原理——滚动数组

实际上,我们可以不用创建一个dp数组来存储数值,

通过“滚动数组”的方式,进行空间优化。

仅仅使用三个变量就可以解题,不必再开辟额外的空间。

2.1.4 算法代码——空间优化版本

class Solution {public int tribonacci(int n) {//动态规划 -> 空间优化if(n == 0) return 0;if(n == 1 || n == 2) return 1;int a = 0, b = 1, c = 1, d = 0;for(int i = 3; i <= n; i++) {d = a + b + c;//滚动操作a = b;b = c;c = d;}return d;}
}

2.2 题二:三步问题

. - 力扣(LeetCode)

 2.2.1 算法原理

  • 状态表示(经验+题目要求):dp[i]:到达第i个位置,一共有多少种方式
  • 状态转移方程:要到达i位置,可由移动到i-1/i-2/i-3位置的基础上,再移动三/二/一步就可到达,即:dp[i]=dp[i-1]+dp[i-2]+dp[i-3];
  • 初始化:dp[1]=1; dp[2]=2; dp[3]=4;
  • 填表顺序:从左往右

2.2.2 算法代码

class Solution {//dp[i]状态表示:到达i位置,一共有多少种方法public int waysToStep(int n) {//1e9 + 7:double类型int MOD = (int)1e9 + 7;if(n == 1 || n == 2) return n;int[] dp = new int[n + 1];//初始化dp[1] = 1; dp[2] = 2; dp[3] = 4;for(int i = 4; i < n + 1; i++) {//状态转移方程dp[i] = ((dp[i - 1] + dp[i - 2]) % MOD + dp[i - 3]) % MOD;}return dp[n];}
}

2.3 题二:使用最小花费爬楼梯

. - 力扣(LeetCode)

2.3.1 算法原理【解法一】

  • 状态表示dp[i]到达i位置,最小花费的金额(以i位置为结尾)
  • 状态转移方程:需要考虑,到达i-1位置和到达i-2位置最小花费的金额数,考虑完后,再进一步到达i位置。也就是说:dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
  • 初始化:dp[0]=0; dp[1]=0;(防越界)
  • dp的建表顺序:从左至右
  • 返回值:dp[n]

2.3.2 算法代码【解法一】

class Solution {public int minCostClimbingStairs(int[] cost) {//解法一:int n = cost.length;//状态表示dp[i]:到达i位置时,最小花费int[] dp = new int[n + 1];//初始化dp[0] = dp[1] = 0;//填表顺序:从左往右for(int i = 2; i <= n; i++) {//状态转移方程dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] +cost[i - 2]);}//返回值:dp[n]return dp[n];}
}

2.3.3 算法原理【解法二】

  • 状态表示dp[i]从i位置开始,到达楼顶,最小花费的金额(以i位置为起点)
  • 状态转移方程:需要考虑,i+1位置和i+2位置到达楼顶最小花费的金额数,再选择走一步还是走两步。也就是说:dp[i]=min(cost[i-1],dp[i-2])+cost[i];
  • 初始化:dp[i-1]=cost[i-1]; dp[i-2]=cost[i-2];(防越界)
  • dp的建表顺序:从右至左
  • 返回值:min(dp[0],dp[1])

​2.3.4 算法代码【解法二】

class Solution {public int minCostClimbingStairs(int[] cost) {int n = cost.length;//状态表示dp[i]:以i位置为起点,到达楼顶的最小花费int[] dp = new int[n];//初始化dp[n - 1] = cost[n - 1];dp[n - 2] = cost[n - 2];for(int i = n - 3; i >= 0; i--) {//填表顺序 -> 从右往左//状态转移方程 --> 自身花费+后面俩台阶的最小花费dp[i] = cost[i] +Math.min(dp[i + 1], dp[i + 2]);}//返回值,考虑 从第一个台阶出发 or 从第二个台阶出发return Math.min(dp[0], dp[1]);}
}

2.4 题三:解码方法

. - 力扣(LeetCode)

2.4.1 算法原理

  • 状态表示dp[i]:以i位置为结尾,解码方式的总数
  • 状态转移方程:s[i]单独解码(成功/失败)+s[i]/s[i-1]组合解码(成功/失败):dp[i]=dp[i-1]+dp[i-2];
  • 初始化:①:if(s[0]!='0') dp[0]=1; ②:dp[1] -->1. s[1]单独解码 & 2. s[1]与s[0]组合解码
  • 返回值:dp[n-1]

2.4.2 算法代码

class Solution {public int numDecodings(String s) {int n = s.length();char[] c = s.toCharArray();//状态表示dp[i]:以i位置为结尾,解码方式的总数int[] dp = new int[n];//初始化第一个位置if(c[0] != '0') dp[0]++;//当长度为1时if(n == 1) return dp[0];//初始化第二个位置if(c[0] != '0' && c[1] != '0') dp[1]++;//单独编码int t = ((c[0] - '0') * 10 + (c[1] - '0'));if(t >= 10 && t <= 26) dp[1]++;//组合编码for(int i = 2; i < n; i++) {//单独编码if(c[i] != '0') dp[i] += dp[i - 1];//组合编码int tt = ((c[i - 1] - '0') * 10 + (c[i] - '0'));if(tt >= 10 && tt <= 26) dp[i] += dp[i - 2];}return dp[n - 1];}
}

2.4.3 初始化技巧

在编写代码时,我们发现了一个问题, 我们在完成初始化工作时,非常的麻烦,初始化的代码占据了大量的篇幅,此时,我们可以使用初始化技巧 ---> dp数组在创建时多开辟一个节点。将初始化时的代码放进循环中(将要初始化的节点与普通节点一概而论),在填dp表的时候完成初始化。

不过,因为多开辟了一个位置,所以在循环填dp表时也需要注意以下问题:

  1. 与原数组的下标映射关系发生了改变
  2. 注意虚拟节点的值(多开辟的那一个节点),虚拟节点的值,要保证后面计算得到的结果是正确的。

在本题中,虚拟节点dp[0]的值应该为1;

原因:

当s[1]可与s[0]组合解码时,会这样计算:dp[2]+=d[2-2](s中的i为1,映射到新dp中i为2)
因为能够组合解码,所以虚拟节点dp[0]的值应为1

2.4.4 算法代码——初始化技巧使用

class Solution {public int numDecodings(String s) {//初始化技巧 --> 优化int n = s.length();char[] c = s.toCharArray();//状态表示dp[i + 1]:以i位置为结尾,解码方式的总数int[] dp = new int[n + 1];//处理虚拟节点里的值dp[0] = 1;//初始化第一个位置if(c[0] != '0') dp[1]++;for(int i = 2; i < n + 1; i++) {//单独编码if(c[i - 1] != '0') dp[i] += dp[i - 1];//组合编码int t = ((c[i - 1 - 1] - '0') * 10 + (c[i - 1] - '0'));if(t >= 10 && t <= 26) dp[i] += dp[i - 2];}return dp[n];}
}

END

http://www.tj-hxxt.cn/news/6053.html

相关文章:

  • 网站建设服务费怎么入账网络安全培训机构哪家好
  • 重庆建网站方法关键词排名点击软件
  • 手机制作最简单钓鱼网站网站推广优化外包便宜
  • 国内设计网站常州seo外包公司
  • 张家港网站制作公司个人建网站需要多少钱
  • 做视频教学网站如何做seo网站优化培训多少价格
  • wordpress ux主题广州谷歌seo
  • 网页网站google下载安卓版
  • 重庆景点攻略长沙网站seo推广
  • 郑州网站建设老牌公司百度手机应用市场
  • 兰州专业做网站的公司sem分析
  • 网络集资网站怎么做交换友情链接的渠道有哪些
  • 国外做名片的网站百度排行榜明星
  • 长沙 外贸网站建设seo查询 站长工具
  • 招聘网站的SEO怎么做西安seo推广
  • 南汇做网站公司广东seo网站优化公司
  • 保定制作公司网站怎么营销推广
  • 扬州网站建设小程序互联网推广公司靠谱吗
  • 深圳公明网站制作北京百度推广开户
  • 网站制作和设计需要多少钱精准营销通俗来说是什么
  • 展示网站多少钱一个淘宝seo排名优化软件
  • 政府网站建设评分标准关键词推广工具
  • 长治市建设工程交易网seo外包公司如何优化
  • 珍岛做网站怎么样网店无货源怎么做
  • asp.net个人网站空间优化培训课程
  • 东莞网站建设推广多少钱发布软文
  • 网站建设利益搜索引擎优化的重要性
  • 建设监理收录网站cps推广联盟
  • 网站建设公司自适应源码线上营销策略有哪些
  • 东莞建网站前端培训班一般多少钱