当前位置: 首页 > news >正文

做logo的比赛网站全网搜索指数

做logo的比赛网站,全网搜索指数,怎样做品牌推广网站,fedora做网站服务器参考资料: 【【零基础入门量子计算-第03讲】线性代数初步与复数】 来自b站up:溴锑锑跃迁 建议关注他的更多高质量文章:CSDN:【溴锑锑跃迁】 0. 前言 强烈建议搭配b站原视频进行观看,这只是我当时看的笔记&#xff0c…

参考资料:
【【零基础入门量子计算-第03讲】线性代数初步与复数】
来自b站up:溴锑锑跃迁
建议关注他的更多高质量文章:CSDN:【溴锑锑跃迁】

0. 前言

强烈建议搭配b站原视频进行观看,这只是我当时看的笔记,读懂这堂课的内容可能需要:线性代数(初等变换、列向量)、离散数学(群)、高等数学(极限等价无穷小部分)的知识储备

1. 向量的表示与运算

  1. 平面向量基本定理,可推广至三维或更多维度情况
    在这里插入图片描述

  2. 内积=点乘,得到标量
    在这里插入图片描述在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  3. 正交基——内积为零的两向量相互垂直,称为正交基底
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

2. 矩阵表示及其运算

在这里插入图片描述
在这里插入图片描述

  • 矩阵运算法则
    在这里插入图片描述在这里插入图片描述

  • 矩阵初等变换
    在这里插入图片描述

  • 逆矩阵(up的视频里面这里要是有如下文字提示可能会更好)
    设有矩阵 A A A和矩阵 B B B,有 A B = E AB=E AB=E(其中 E E E表示为单位矩阵,有的地方会用 I I I表示),则B为A的逆矩阵,即有 B = A − 1 B=A^{-1} B=A1
    )

对之前鸡兔同笼所列矩阵求解过程进行详细展示,关键是求逆矩阵左乘到右侧
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

矩阵等式的理解方式
在这里插入图片描述
在这里插入图片描述

  • 理解方式一:(上图左)映射、矩阵变换,即从一个向量向另一个向量变换=矩阵
  • 理解方式二:(上图右)用坐标系本身代表的基底去组合成新的向量
    在这里插入图片描述
    在这里插入图片描述
    旋转矩阵:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

3. 群的简介(离散数学相关)

1. 群的定义

  • 考虑一个集合G并对其中元素定义/指定一种操作称为群乘法

  • 集合G指定群乘法后其中元素应当满足以下四条性质才能被称作

    1. 封闭性在这里插入图片描述

    2. 结合律在这里插入图片描述

    3. 单位元在这里插入图片描述

    4. 逆元素在这里插入图片描述

    在这里插入图片描述日是e的象形
    在这里插入图片描述
    在这里插入图片描述
    下面上三个实例
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    同态映射:先作用再乘法=先乘法再作用
    在这里插入图片描述
    即: e x ∗ e y = e x + y e^x*e^y=e^{x+y} exey=ex+y,即 f ( x ) + f ( y ) = f ( x + y ) f(x)+f(y)=f(x+y) f(x)+f(y)=f(x+y)

在这里插入图片描述
在这里插入图片描述

4. 复数简介

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
i轴和1轴的0处是同一个0,将他们连接起来构成一个平面!!!
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
平面上表示
在这里插入图片描述
棣莫弗定理
在这里插入图片描述
在这里插入图片描述
此处请联想到上述的同态映射,即: e x ∗ e y = e x + y e^x*e^y=e^{x+y} exey=ex+y,即 f ( x ) + f ( y ) = f ( x + y ) f(x)+f(y)=f(x+y) f(x)+f(y)=f(x+y),下面是通过python对猜想进行证实
在这里插入图片描述
作图
在这里插入图片描述
即:
lim ⁡ n → ∞ ( 1 + 1 n ) n = e \begin{aligned}\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n&=e\end{aligned} nlim(1+n1)n=e
lim ⁡ n → ∞ ( 1 + a n ) n = [ lim ⁡ n → ∞ ( 1 + a n ) n a ] a ⟶ ⁡ t = n a [ lim ⁡ t → ∞ ( 1 + 1 t ) t ] a = e a \lim_{n\to\infty}\left(1+\frac{\color{red}{a}}n\right)^n=\left[\lim_{n\to\infty}\left(1+\frac{\color{red}{a}}n\right)^{\color{red}{\frac{n}{a}}}\right]^a\overset{t=\frac na}{\operatorname*{\longrightarrow}}\left[\lim_{t\to\infty}\left(1+\frac1t\right)^t\right]^a=e^{\color{red}{a}} nlim(1+na)n=[nlim(1+na)an]at=an[tlim(1+t1)t]a=ea
将a换成x,x也看作常数:
lim ⁡ n → ∞ ( 1 + x n ) n = e x \lim_{n\to\infty}\left(1+\frac xn\right)^n=e^x nlim(1+nx)n=ex
在这里插入图片描述

在这里插入图片描述
使用幂函数调整比例,从而张成新的函数
(看到这里我真的绷不住了,这个样子叫做零基础。。。还好我刚考过研,还记得些哈哈哈)
在这里插入图片描述
在这里插入图片描述
欧拉公式:
e i x = c o s x + i s i n x e^{ix}=cosx+isinx eix=cosx+isinx
从而有
z = r ( cos ⁡ θ + i s i n θ ) = r e i θ z=r(\cos\theta+isin\theta)=re^{i\theta} z=r(cosθ+isinθ)=reiθ
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

e L θ ν ⃗ ⇔ e^{L\theta}\vec{\nu}\Leftrightarrow eLθν v ⃗ \vec{v} v 逆时针转动角度 θ \theta θ

e i θ e^{i\theta} eiθ z ⇔ z\Leftrightarrow z z z z逆时针转动角度 θ \theta θ

在这里插入图片描述

http://www.tj-hxxt.cn/news/43387.html

相关文章:

  • 做网站在哪接广告电商平台如何推广运营
  • 做网站客源杭州seo招聘
  • 温州网站建设制作设计公司谷歌推广公司
  • 西宁做网站的有吗中国互联网域名注册服务机构
  • 陕西网站建设托管电子商务网站建设案例
  • 胶南做网站青岛网站制作公司
  • 微网站建设目的网络推广工作
  • c程序设计教学网站怎么做一个新手如何推销产品
  • 网站安全建设目的是什么百度竞价排名价格查询
  • 建设企业网站e路护航seo是搜索引擎优化吗
  • 首页>新闻>正文 网站怎么做百度指数特点
  • 网络培训总结与反思宁波seo排名优化
  • 苏州企业商务网站建设兰州做网站的公司
  • 网站开通宣传怎么写在线bt磁力搜索
  • h5网站开发用什么软件制作最新网站查询工具
  • wordpress 女性东莞网站seo公司
  • 西安网站建设-中国互联整合营销方案
  • 免费速建网站莆田seo
  • 建设网站框架长沙网站制作公司哪家好
  • 郑州高端网站建设团队搜索引擎营销概念
  • 网站ftp模板最新app推广项目平台
  • 外贸建设企业网站服务排行榜软件
  • 高端型网站建设seo搜索引擎优化教程
  • 德尔普网络做网站怎么样百度搜索引擎技巧
  • 在哪查询网站做的哪些外链制作网站的软件
  • 香港建设银行网站首页山西网页制作
  • 西安网络公司做网站成功的软文推广
  • 网站开发与运营线上推广哪个平台最好
  • it软件网站建设百度竞价怎么做效果好
  • 用html做女装网站互联网营销是什么意思