当前位置: 首页 > news >正文

苏州网站建设哪个比较牛百度的网站网址

苏州网站建设哪个比较牛,百度的网站网址,綦江网站建设,wordpress与saas【LetMeFly】53.最大子数组和:DP 或 递归 力扣题目链接:https://leetcode.cn/problems/maximum-subarray/ 给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最…

【LetMeFly】53.最大子数组和:DP 或 递归

力扣题目链接:https://leetcode.cn/problems/maximum-subarray/

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

 

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

 

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

 

进阶:如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。

方法一:DP

使用动态规划的话思路比较简单,使用一个变量 c n t cnt cnt记录以当前元素为结尾的最大子数组和

这样,我们只需要遍历一遍 n u m s nums nums数组,使用公式 c n t = max ⁡ ( c n t + n u m s [ i ] , n u m s [ i ] ) cnt = \max(cnt + nums[i], nums[i]) cnt=max(cnt+nums[i],nums[i])维护 c n t cnt cnt,并记得更新答案的最大值即可。

  • 时间复杂度 O ( l e n ( n u m s ) ) O(len(nums)) O(len(nums))
  • 空间复杂度 O ( 1 ) O(1) O(1)

AC代码

C++
class Solution {
public:int maxSubArray(vector<int>& nums) {int ans = nums[0];int cnt = nums[0];for (int i = 1; i < nums.size(); i++) {cnt = max(cnt + nums[i], nums[i]);ans = max(ans, cnt);}return ans;}
};
Python
# from typing import Listclass Solution:def maxSubArray(self, nums: List[int]) -> int:ans, cnt = nums[0], nums[0]for i in range(1, len(nums)):cnt = max(cnt + nums[i], nums[i])ans = max(ans, cnt)return ans

方法二:递归(分治)

写一个函数 g e t ( n u m s , l , r ) get(nums, l, r) get(nums,l,r),返回 n u m s nums nums数组从 l l l r r r的子数组的:

  1. lSum: 以 n u m s [ l ] nums[l] nums[l]为起点的最大子数组和
  2. rSum: 以 n u m s [ r ] nums[r] nums[r]为终点的最大子数组和
  3. MSum: 最大子数组和
  4. iSum: 和

那么,我们就可以愉快地进行递归啦!

对于 g e t ( n u m s , l , r ) get(nums, l, r) get(nums,l,r),我们可以分别求出 g e t ( n u m s , l , ⌊ l + r 2 ⌋ ) get(nums, l, \lfloor\frac{l + r}{2}\rfloor) get(nums,l,2l+r⌋)(记为 l S t a t u s lStatus lStatus)和 g e t ( n u m s , ⌊ l + r 2 ⌋ + 1 , r ) get(nums, \lfloor\frac{l + r}{2}\rfloor + 1, r) get(nums,2l+r+1,r)(记为 r S t a t u s rStatus rStatus)。递归终止条件为 l = r l=r l=r(只有单个元素)。

于是就有:

  1. l S u m = max ⁡ ( l S t a t u s . l S u m , l S t a t u s . i S u m + r S t a t u s . l S u m ) lSum = \max(lStatus.lSum, lStatus.iSum + rStatus.lSum) lSum=max(lStatus.lSum,lStatus.iSum+rStatus.lSum)(以 n u m s [ l ] nums[l] nums[l]为起点,不跨过 n u m s [ ⌊ l + r 2 ⌋ ] nums[\lfloor\frac{l + r}{2}\rfloor] nums[⌊2l+r⌋]和跨过)
  2. r S u m = max ⁡ ( r S t a t u s . r S u m , l S t a t u s . r S u m + r S t a t u s . i S u m ) rSum = \max(rStatus.rSum, lStatus.rSum + rStatus.iSum) rSum=max(rStatus.rSum,lStatus.rSum+rStatus.iSum)(以 n u m s [ r ] nums[r] nums[r]为终点,不跨过 n u m s [ ⌊ l + r 2 ⌋ ] nums[\lfloor\frac{l + r}{2}\rfloor] nums[⌊2l+r⌋]和跨过)
  3. M S u m = max ⁡ ( l S t a t u s . M S u m , r S t a t u s . M S u m , l S t a t u s . r S u m + r S t a t u s . l S u m ) MSum = \max(lStatus.MSum, rStatus.MSum, lStatus.rSum + rStatus.lSum) MSum=max(lStatus.MSum,rStatus.MSum,lStatus.rSum+rStatus.lSum)(左半部分最大子数组和、右半部分最大子数组和、跨过 n u m s [ ⌊ l + r 2 ⌋ ] nums[\lfloor\frac{l + r}{2}\rfloor] nums[⌊2l+r⌋]的子数组和)
  4. i S u m = l S t a t u s . i S u m + r S t a t u s . i S u m iSum = lStatus.iSum + rStatus.iSum iSum=lStatus.iSum+rStatus.iSum(左半右半数组和 之和)

最终返回 g e t ( n u m s , 0 , l e n ( n u m s ) − 1 ) . M S u m get(nums, 0, len(nums) - 1).MSum get(nums,0,len(nums)1).MSum即可。

  • 时间复杂度 O ( l e n ( n u m s ) ) O(len(nums)) O(len(nums))(相当于后序遍历了一遍二叉树)
  • 空间复杂度 O ( log ⁡ l e n ( n u m s ) ) O(\log len(nums)) O(loglen(nums))(空间复杂度主要来源于递归)

AC代码

C++
struct Status {int lSum, rSum, MSum, iSum;
};class Solution {
private:Status get(vector<int>& a, int l, int r) {  // get[l, r]if (l == r) {return {a[l], a[l], a[l], a[l]};}int m = (l + r) >> 1;Status lStatus = get(a, l, m);Status rStatus = get(a, m + 1, r);return {max(lStatus.lSum, lStatus.iSum + rStatus.lSum),max(rStatus.rSum, lStatus.rSum + rStatus.iSum),max(lStatus.MSum, max(rStatus.MSum, lStatus.rSum + rStatus.lSum)),lStatus.iSum + rStatus.iSum};}
public:int maxSubArray(vector<int>& nums) {return get(nums, 0, nums.size() - 1).MSum;}
};
Python
# from typing import Listclass Status:def __init__(self, lSum: int, rSum: int, MSum: int, iSum: int) -> None:self.lSum = lSumself.rSum = rSumself.MSum = MSumself.iSum = iSumclass Solution:def get(self, nums: List[int], l: int, r: int) -> Status:if l == r:return Status(nums[l], nums[l], nums[l], nums[l])m = (l + r) >> 1lStatus = self.get(nums, l, m)rStatus = self.get(nums, m + 1, r)return Status(max(lStatus.lSum, lStatus.iSum + rStatus.lSum),max(rStatus.rSum, lStatus.rSum + rStatus.iSum),max(lStatus.MSum, rStatus.MSum, lStatus.rSum + rStatus.lSum),lStatus.iSum + rStatus.iSum)def maxSubArray(self, nums: List[int]) -> int:return self.get(nums, 0, len(nums) - 1).MSum"""为何不用切片作为参数?
>>> a = [1, 2, 3]
>>> a
[1, 2, 3]
>>> b = a[1:2]
>>> b
[2]
>>> b[0] = 99
>>> a
[1, 2, 3]
>>> b
[99]
"""

方法二意义何在?

相较于方法一,方法二的时间复杂度没有提升,空间复杂度反而更高了。那么方法二的意义何在?

这道题只问了“整个数组的”最大子数组和。但是如果某天遇到了一道题,问你 1 0 5 10^5 105次且每次随机问一个 [ l , r ] [l, r] [l,r]的最大子数组和 呢?

那么我们使用方法二,并且将每层的结果记录下来,就能做到每次查询都在 O ( log ⁡ n ) O(\log n) O(logn)的时间复杂度下返回结果。

这就是没有懒标记的线段树。

同步发文于CSDN,原创不易,转载经作者同意后请附上原文链接哦~
Tisfy:https://letmefly.blog.csdn.net/article/details/134504375

http://www.tj-hxxt.cn/news/41416.html

相关文章:

  • 关于文明网站建设存在的问题如何自己制作网页
  • 常用的博客建站程序专业搜索引擎seo服务商
  • app应用下载网站源码做推广公司
  • 网站建设设备清单网站友情链接
  • 好的开源网站百度账号快速注册
  • 做网推的网站2022年近期重大新闻事件
  • 建筑公司网站源码开源最近国家新闻
  • 大江网站建设百度排名点击器
  • 用凡科可以做视频网站吗php免费开源crm系统
  • 手机建站平台淘客自己如何优化网站排名
  • 郑州市做网站公司网站推广120种方法
  • 无锡做装修网站成都网站seo公司
  • 网站外链是什么全网整合营销推广方案
  • 请问做网站和编程哪个容易些网站优化人员通常会将目标关键词放在网站首页中的
  • 交友网站美女要一起做外贸南京做网站的公司
  • 公司注册资金实缴和认缴有什么区别aso优化重要吗
  • 网站需求分析文档seo权重是什么意思
  • wordpress 文章与页面长沙百度seo代理
  • 网站免费建推广普通话的意义
  • 昌乐网站制作沈阳企业网站seo公司
  • 网站备案代码生成免费的推广平台
  • 网站代码快捷键淄博seo网络公司
  • 南京政府门户网站建设问题网站seo站外优化
  • 怎么样做网站的目录结构推广优化网站排名教程
  • 网站建设网上接单长沙关键词快速排名
  • b站黄页推广网站整站seo排名外包
  • 河北省住房和城乡建设部网站免费有效的推广平台
  • 昆明做网站哪家好哈尔滨关键词优化方式
  • 网站制作价格东莞168推广网
  • 怎样做酒店网站ppt品牌运营具体做什么