文山专业网站建设联系电话标题优化
本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:information-theory】,需要的朋友们自取。或者公众号【AIShareLab】回复 信息论 也可获取。
文章目录
- 离散无记忆信源的序列熵
- 信源的序列熵
- 离散有记忆信源的序列熵
- 平稳有记忆N次扩展源的熵
离散无记忆信源的序列熵
马尔可夫信源的特点:无后效性。
发出单个符号的信源
- 指信源每次只发出一个符号代表一个消息;
发出符号序列的信源
- 指信源每次发出一组含二个以上符号的符号序列代表一个消息。
当信源无记忆时:
p(Xˉ=xi)=p(xi1,xi2,⋯,xiL)=p(xi1)p(xi2)p(xi3)⋯p(xiL)=∏l=1Lp(xil)\begin{aligned} p(\bar{X}&\left.=x_{i}\right)=p\left(x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{L}}\right) =p\left(x_{i_{1}}\right) p\left(x_{i_{2}}\right) p\left(x_{i_{3}}\right) \cdots p\left(x_{i_{L}}\right)=\prod_{l=1}^{L} p\left(x_{i_{l}}\right) \end{aligned} p(Xˉ=xi)=p(xi1,xi2,⋯,xiL)=p(xi1)p(xi2)p(xi3)⋯p(xiL)=l=1∏Lp(xil)
信源的序列熵
H(Xˉ)=−∑i=1nLp(xi)logp(xi)=−∑i∏l=1Lp(xii)logp(xii)=∑l=1LH(Xl)\begin{aligned} H(\bar{X}) &=-\sum_{i=1}^{n^{L}} p\left(x_{i}\right) \log p\left(x_{i}\right) \\ &=-\sum_{i} \prod_{l=1}^{L} p\left(x_{i_{i}}\right) \log p\left(x_{i_{i}}\right)=\sum_{l=1}^{L} H\left(X_{l}\right) \end{aligned} H(Xˉ)=−i=1∑nLp(xi)logp(xi)=−i∑l=1∏Lp(xii)logp(xii)=l=1∑LH(Xl)
-
若又满足平稳特性(平稳信号包含的信息量小,其统计特性随时间不变化),即与序号l无关时:
p(X‾)=∏l=1Lp(xii)=pLp(\overline{\mathrm{X}})=\prod_{l=1}^{L} p\left(x_{i_{\mathrm{i}}}\right)=p^{L} p(X)=l=1∏Lp(xii)=pL
-
信源的序列熵
H(X‾)=LH(X)H(\overline{\mathrm{X}})=\operatorname{LH}(X) H(X)=LH(X)
-
平均每个符号(消息)熵(符号熵) 为
HL(Xˉ)=1LH(Xˉ)=H(X)H_{L}(\bar{X})=\frac{1}{L} H(\bar{X})=H(X) HL(Xˉ)=L1H(Xˉ)=H(X)
例: 有一个无记忆信源随机变量 X∈(0,1)\mathrm{X} \in(0,1)X∈(0,1) , 等概率分布, 若以单个符号出现为一事件, 则此时的信源熵:
H(X)=log22=1H(X)=\log _{2} 2=1H(X)=log22=1 bit/符号
即用 1 比特就可表示该事件。
如果以两个符号出现 (L=2\mathrm{L}=2L=2 的序列 )为一事件, 则随机序 列 X∈(00,01,10,11)\mathrm{X} \in(00,01,10,11)X∈(00,01,10,11) , 信源的序列熵
H(Xˉ)=log24=2H(\bar{X})=\log _{2} 4=2H(Xˉ)=log24=2 bit/序列
即用2比特才能表示该事件。
信源的符号熵
H2(X‾)=12H(X‾)=1H_{2}(\overline{\mathrm{X}})=\frac{1}{2} H(\overline{\mathrm{X}})=1H2(X)=21H(X)=1 bit/符号
- 信源的序列熵
H(X‾)=H(XL)=−∑i=19p(ai)logp(ai)=3bit/序列 H(\overline{\mathrm{X}})=H\left(X^{L}\right)=-\sum_{i=1}^{9} p\left(a_{i}\right) \log p\left(a_{i}\right)=3 b i t / \text { 序列 }H(X)=H(XL)=−∑i=19p(ai)logp(ai)=3bit/ 序列
- 平均每个符号 (消息) 熵为
H(X)=−∑i=13p(xi)logp(xi)=1.5bit/符号 H(Xˉ)=2H(X)=2×1.5=3bit/序列 \begin{array}{c} H(X)=-\sum_{i=1}^{3} p\left(x_{i}\right) \log p\left(x_{i}\right)=1.5 \text { bit/符号 } \\ H(\bar{X})=2 H(X)=2 \times 1.5=3 \mathrm{bit} / \text { 序列 } \end{array}H(X)=−∑i=13p(xi)logp(xi)=1.5 bit/符号 H(Xˉ)=2H(X)=2×1.5=3bit/ 序列
离散有记忆信源的序列熵
-
对于有记忆信源,就不像无记忆信源那样简单, 它必须引入条件熵的概念, 而且只能在某些特殊情况下才能得到一些有价值的结论。
-
对于由两个符号组成的联合信源, 有下列结论:
H(X1X2)=H(X1)+H(X2∣X1)=H(X2)+H(X1∣X2)H\left(X_{1} X_{2}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)=H\left(X_{2}\right)+H\left(X_{1} \mid X_{2}\right) H(X1X2)=H(X1)+H(X2∣X1)=H(X2)+H(X1∣X2)H(X1)≥H(X1∣X2),H(X2)≥H(X2∣X1)H\left(X_{1}\right) \geq H\left(X_{1} \mid X_{2}\right), H\left(X_{2}\right) \geq H\left(X_{2} \mid X_{1}\right) H(X1)≥H(X1∣X2),H(X2)≥H(X2∣X1)
-
当前后符号无依存关系时,有下列推论:
H(X1X2)=H(X1)+H(X2)H(X1∣X2)=H(X1),H(X2∣X1)=H(X2)\begin{array}{l} H\left(X_{1} X_{2}\right)=H\left(X_{1}\right)+H\left(X_{2}\right) \\ H\left(X_{1} \mid X_{2}\right)=H\left(X_{1}\right), H\left(X_{2} \mid X_{1}\right)=H\left(X_{2}\right) \end{array} H(X1X2)=H(X1)+H(X2)H(X1∣X2)=H(X1),H(X2∣X1)=H(X2) -
若信源输出一个L长序列,则信源的序列熵为
H(X‾)=H(X1X2⋯XL)=H(X1)+H(X2∣X1)+⋯+H(XL∣XL−1⋯X1)=∑lLH(Xl∣Xl−1)=H(XL)\begin{aligned} H(\overline{\mathrm{X}}) &=H\left(X_{1} X_{2} \cdots X_{L}\right) \\ &=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\cdots+H\left(X_{L} \mid X_{L-1} \cdots X_{1}\right) \\ &=\sum_{l}^{L} H\left(X_{l} \mid X^{l-1}\right)=H\left(X^{L}\right) \end{aligned} H(X)=H(X1X2⋯XL)=H(X1)+H(X2∣X1)+⋯+H(XL∣XL−1⋯X1)=l∑LH(Xl∣Xl−1)=H(XL)
-
平均每个符号的熵为:
HL(Xˉ)=1LH(XL)H_{L}(\bar{X})=\frac{1}{L} H\left(X^{L}\right) HL(Xˉ)=L1H(XL)
-
若当信源退化为无记忆时: 若进一步又满足平稳性时
H(Xˉ)=∑lLH(Xl)H(Xˉ)=LH(X)H(\bar{X})=\sum_{l}^{L} H\left(X_{l}\right) \quad H(\bar{X})=L H(X) H(Xˉ)=l∑LH(Xl)H(Xˉ)=LH(X)
平稳有记忆N次扩展源的熵
设 X\mathbf{X}X 为离散平稳有记忆信源, X\mathbf{X}X 的 N\mathbf{N}N 次扩展源记为 XNX^{N}XN ,
XN=[X1X2⋯XN]X^{N}=\left[X_{1} X_{2} \cdots X_{N}\right] XN=[X1X2⋯XN]
根据熵的可加性,得
H(XN)=H(X1X2⋯XN)=H(X1)+H(X2/X1)+⋯H(XN/X1⋯XN−1)H\left(X^{N}\right)=H\left(X_{1} X_{2} \cdots X_{N}\right)=H\left(X_{1}\right)+H\left(X_{2} / X_{1}\right)+\cdots H\left(X_{N} / X_{1} \cdots X_{N-1}\right) H(XN)=H(X1X2⋯XN)=H(X1)+H(X2/X1)+⋯H(XN/X1⋯XN−1)
根据平稳性和熵的不增原理,得H(XN)≤NH(X1)H\left(X^{N}\right) \leq N H\left(X_{1}\right)H(XN)≤NH(X1), 仅当无记忆信源时等式成立。
对于 X\mathrm{X}X 的 N\mathrm{N}N 次扩展源, 定义平均符号熵为:
HN(X)=1NH(XN)=1NH(X1⋯XN)H_{N}(X)=\frac{1}{N} H\left(X^{N}\right)=\frac{1}{N} H\left(X_{1} \cdots X_{N}\right) HN(X)=N1H(XN)=N1H(X1⋯XN)
信源 X\mathrm{X}X 的极限符号熵定义为:
H∞(X)=limN→∞1NH(XN)=limN→∞1NH(X1⋯XN)H_{\infty}(X)=\lim _{N \rightarrow \infty} \frac{1}{N} H(X^{N})=\lim _{N \rightarrow \infty} \frac{1}{N} H(X_{1} \cdots X_{N}) H∞(X)=N→∞limN1H(XN)=N→∞limN1H(X1⋯XN)
极限符号熵简称符号熵, 也称熵率。
定理: 对任意离散平稳信源, 若 H1(X)<∞H_{1}(X)<\inftyH1(X)<∞ , 有:
(1) H(XN/X1⋯XN−1)H\left(X_{N} / X_{1} \cdots X_{N-1}\right)H(XN/X1⋯XN−1) 不随 N\mathbf{N}N而增加;
(2) HN(X)≥H(XN/X1⋯XN−1);H_{N}(X) \geq H\left(X_{N} / X_{1} \cdots X_{N-1}\right) ;HN(X)≥H(XN/X1⋯XN−1);
(3)HN(X)H_{N}(X)HN(X) 不随 N 而增加;
(4) H∞(X)H_{\infty}(X)H∞(X) 存在,且 H∞(X)=limN→∞H(XN/X1⋯XN−1)H_{\infty}(X)=\lim _{N \rightarrow \infty} H(X_{N} / X_{1} \cdots X_{N-1})H∞(X)=limN→∞H(XN/X1⋯XN−1)
该式表明, 有记忆信源的符号熵也可通过计算极限条件熵得到。
参考文献:
- Proakis, John G., et al. Communication systems engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
- Proakis, John G., et al. SOLUTIONS MANUAL Communication Systems Engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
- 周炯槃. 通信原理(第3版)[M]. 北京:北京邮电大学出版社, 2008.
- 樊昌信, 曹丽娜. 通信原理(第7版) [M]. 北京:国防工业出版社, 2012.