当前位置: 首页 > news >正文

桂林网站建设官网岳阳网站搭建

桂林网站建设官网,岳阳网站搭建,花溪建设村镇银行官方网站,东莞四网合一网站建设文章目录 第1关#xff1a;基本统计编程要求测试说明答案代码 第2关#xff1a;回归编程要求测试说明参考资料答案代码 第3关#xff1a;分类编程要求测试说明参考资料答案代码 第4关#xff1a;协同过滤编程要求测试说明参考资料答案代码 第5关#xff1a;聚类编程要求测… 文章目录 第1关基本统计编程要求测试说明答案代码 第2关回归编程要求测试说明参考资料答案代码 第3关分类编程要求测试说明参考资料答案代码 第4关协同过滤编程要求测试说明参考资料答案代码 第5关聚类编程要求测试说明参考资料答案代码 第6关降维编程要求测试说明参考资料答案代码 第7关特征提取与转化编程要求测试说明答案代码 第8关频繁模式挖掘编程要求测试说明参考资料答案代码 第9关评估指标编程要求测试说明答案代码 第1关基本统计 编程要求 根据提示在右侧编辑器补充代码计算所给数据的 pearson 相关系数和 spearman 相关系数。 测试说明 平台会对你编写的代码进行测试 预期输出 DenseMatrix([[1. , 0.05564149, nan, 0.40047142],[0.05564149, 1. , nan, 0.91359586],[ nan, nan, 1. , nan],[0.40047142, 0.91359586, nan, 1. ]]) DenseMatrix([[1. , 0.10540926, nan, 0.4 ],[0.10540926, 1. , nan, 0.9486833 ],[ nan, nan, 1. , nan],[0.4 , 0.9486833 , nan, 1. ]])答案代码 from pyspark.ml.linalg import Vectors from pyspark.ml.stat import Correlation from pyspark.sql import SparkSessiondef trainingModel(spark):# 自定义数据集data [(Vectors.sparse(4, [(0, 1.0), (3, -2.0)]),),(Vectors.dense([4.0, 5.0, 0.0, 3.0]),),(Vectors.dense([6.0, 7.0, 0.0, 8.0]),),(Vectors.sparse(4, [(0, 9.0), (3, 1.0)]),)]########## Begin ########### 将 data 转化为 DataFramedata spark.createDataFrame(data, [features])# 计算 df 的 pearson 相关系数pearsonCorr Correlation.corr(data, features, pearson).collect()[0][0]# 计算 df 的 spearman 相关系数spearmanCorr Correlation.corr(data, features, spearman).collect()[0][0]# 返回 pearson 相关系数和 spearman 相关系数return pearsonCorr, spearmanCorr########## End ########## 第2关回归 编程要求 根据提示在右侧编辑器补充代码实现线性回归的过程函数trainingModel(spark) 函数返回训练好的模型。其中LinearRegression 只需设置以下三个参数 maxIter10 regParam0.3 elasticNetParam0.8所需数据在 /data/workspace/myshixun/project/src/step2/linear.txt 中。 测试说明 平台会对你编写的代码进行测试最终会输出该模型的 RMSE 指标: R M S E 1 m ∑ i ( f ( x i ) − y i ) 2 RMSE\sqrt{\frac1m\sum_i(f(x_i)-y_i)^2} RMSEm1​i∑​(f(xi​)−yi​)2 ​ 如果该指标在规定的范围内则通过测试测试代码将会输出 success如果没有通过测试将会输出 fail。 预期输出 success 参考资料 Spark 官方文档 答案代码 from pyspark.ml.regression import LinearRegression from pyspark.sql import SparkSessiondef trainingModel(spark):########## Begin ########### 读取数据data spark.read.format(libsvm).load(/data/workspace/myshixun/project/src/step2/linear.txt)# 建立模型lr LinearRegression(maxIter10, regParam0.3, elasticNetParam0.8)# 训练模型model lr.fit(data)# 返回模型return model########## end ########## 第3关分类 编程要求 根据提示在右侧编辑器补充代码实现逻辑回归的过程函数trainingModel(spark) 函数返回训练好的模型。其中LogisticRegression 只需设置以下三个参数 maxIter10 regParam0.3 elasticNetParam0.8所需数据在 /data/workspace/myshixun/project/src/step3/logistic.txt 中。 测试说明 平台会对你编写的代码进行测试最终会输出该模型的 roc 指标如果该指标在规定的范围内则通过测试测试代码将会输出 success如果没有通过测试将会输出 fail。 预期输出 success 参考资料 Spark 官方文档 答案代码 from pyspark.ml.classification import LogisticRegression from pyspark.sql import SparkSessiondef trainingModel(spark):########## Begin ########### 读取数据data spark.read.format(libsvm).load(/data/workspace/myshixun/project/src/step3/logistic.txt)# 建立模型lr LogisticRegression(maxIter10, regParam0.3, elasticNetParam0.8)# 训练模型model lr.fit(data)# 返回模型,数据集return model########## End ########## 第4关协同过滤 编程要求 根据提示在右侧编辑器补充代码实现协同过滤的过程函数trainingModel(spark) 函数返回训练好的模型。 所需数据在 /data/workspace/myshixun/project/src/step4/movie.txt 中读取数据后请按如下要求命名列 第一列userID 数据类型int第二列movieID 数据类型int第三列rating 数据类型float第四列timestamp 数据类型int 其中ALS 除了要设置 userCol , itemCol 和 rating 还需要设置以下三个参数 maxIter5 regParam0.01 coldStartStrategydrop测试说明 平台会对你编写的代码进行测试最终会输出该模型的 RMSE 指标如果该指标在规定的范围内则通过测试测试代码将会输出 success如果没有通过测试将会输出 fail。 预期输出 success 参考资料 Spark 官方文档 答案代码 from pyspark.ml.evaluation import RegressionEvaluator from pyspark.ml.recommendation import ALS from pyspark.sql import SparkSession,Rowdef trainingModel(spark):########## Begin ########### 读取数据data spark.read.text(/data/workspace/myshixun/project/src/step4/movie.txt)# 数据预处理处理分隔符为每一列添加索引data data.rdd.map(lambda line: line.value.split(::))\.map(lambda p: Row(userIDint(p[0]), movieIDint(p[1]), ratingfloat(p[2]), timestampint(p[3])))# 创建数据框ratings spark.createDataFrame(data)# 划分训练集和测试集 82(train, test) ratings.randomSplit([0.8, 0.2], seed0)# 在训练集上使用 ALS 建立推荐系统als ALS(maxIter5, regParam0.01, coldStartStrategydrop, userColuserID, itemColmovieID, ratingColrating)# 训练模型model als.fit(train)########## End ########### 计算测试集上的 RMSE 值predictions model.transform(test)rmse RegressionEvaluator(metricNamermse, labelColrating,predictionColprediction).evaluate(predictions)# 返回 rmsereturn rmse 第5关聚类 编程要求 根据提示在右侧编辑器补充代码实现聚类的过程函数trainingModel(spark) 函数返回训练好的模型对于模型你只需要设置以下两个参数 k 2 seed 1所需数据在 /data/workspace/myshixun/project/src/step5/k-means.txt 中 测试说明 平台会对你编写的代码进行测试最终会输出该模型的 Silhouette score 如果该指标在规定的范围内则通过测试测试代码将会输出 success如果没有通过测试将会输出 fail。 预期输出 success 参考资料 Spark 官方文档 答案代码 from pyspark.ml.clustering import KMeans from pyspark.ml.evaluation import ClusteringEvaluator from pyspark.sql import SparkSessiondef trainingModel(spark):########## Begin ########### 读取数据data spark.read.format(libsvm).load(/data/workspace/myshixun/project/src/step5/k-means.txt)# 建立 kmeans 模型kmeans KMeans(k2)kmeans.setSeed(1)# 训练模型model kmeans.fit(data)########## End ##########predictions model.transform(data)# 返回 模型、预测值return model, predictions第6关降维 编程要求 根据提示在右侧编辑器补充代码实现降维的过程函数trainingModel(spark) 其中PCA 只需要设置以下三个参数 k3 inputColfeatures, outputColpcaFeatures测试说明 平台会对你编写的代码进行测试测试代码将会输训练好的矩阵。 预期输出 ----------------------------------------------------------- |pcaFeatures | ----------------------------------------------------------- |[1.6485728230883807,-4.013282700516296,-5.524543751369388] | |[-4.645104331781534,-1.1167972663619026,-5.524543751369387]| |[-6.428880535676489,-5.337951427775355,-5.524543751369389] | -----------------------------------------------------------参考资料 Spark 官方文档 答案代码 from pyspark.ml.feature import PCA from pyspark.ml.linalg import Vectors from pyspark.sql import SparkSessiondef trainingModel(spark):# 自定义数据集data [(Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),),(Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),),(Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]########## Begin ########### 创建数据框df spark.createDataFrame(data, [features])# 建立模型pca PCA(k3, inputColfeatures, outputColpcaFeatures)# 训练模型model pca.fit(df)########## End ########### 返回计算结果result model.transform(df).select(pcaFeatures)return result 第7关特征提取与转化 编程要求 根据提示在右侧编辑器补充代码输出经过ml.feature.FeatureHasher 的特征输出的特征命名为 features。注意只需输出 feature 特征列。 测试说明 平台会对你编写的代码进行测试测试代码将会输训练好的特征矩阵。 预期输出 -------------------------------------------------------- |features | -------------------------------------------------------- |(262144,[174475,247670,257907,262126],[2.2,1.0,1.0,1.0])| |(262144,[70644,89673,173866,174475],[1.0,1.0,1.0,3.3]) | |(262144,[22406,70644,174475,187923],[1.0,1.0,4.4,1.0]) | |(262144,[70644,101499,174475,257907],[1.0,1.0,5.5,1.0]) | --------------------------------------------------------答案代码 from pyspark.ml.feature import FeatureHasher from pyspark.sql import SparkSessiondef trainingModel(spark):# 自定义数据集data spark.createDataFrame([(2.2, True, 1, foo),(3.3, False, 2, bar),(4.4, False, 3, baz),(5.5, False, 4, foo)], [real, bool, stringNum, string])########## Begin ########### 特征提取使用 FeatureHasherhasher FeatureHasher()hasher.setInputCols([real, bool, stringNum, string])hasher.setOutputCol(features)hashed_df hasher.transform(data)# 返回特征return hashed_df.select(features)########## End ########## 第8关频繁模式挖掘 编程要求 根据提示在右侧编辑器补充代码实现频繁模式挖掘的过程函数trainingModel(spark) 在设置 FPGrowth 只需要设置以下三个参数 itemsColitems, minSupport0.5, minConfidence0.6测试说明 平台会对你编写的代码进行测试最终会输出训练后的结果 预期输出 ------------------------- | id| items|prediction| ------------------------- | 0| [1, 2, 5]| []| | 1|[1, 2, 3, 5]| []| | 2| [1, 2]| [5]| -------------------------参考资料 Spark 官方文档 答案代码 from pyspark.ml.fpm import FPGrowth from pyspark.sql import SparkSessiondef trainingModel(spark):# 自定义数据集df spark.createDataFrame([(0, [1, 2, 5]),(1, [1, 2, 3, 5]),(2, [1, 2])], [id, items])########## Begin ########### 建立模型fp FPGrowth(minSupport0.5, minConfidence0.6, itemsColitems)# 训练模型fpm fp.fit(df)# 返回模型,数据集return fpm, df########## End ########## 第9关评估指标 编程要求 根据提示在右侧编辑器补充代码在逻辑回归实例中返回 areaUnderROC 指标和 acc 指标。 测试说明 平台会对你编写的代码进行测试最终会返回逻辑回归实例中的 areaUnderROC 指标和 acc 指标如果这两个值在设定范围内将输出 success否则输出 fail 。 预期输出 success 答案代码 from pyspark.ml.classification import LogisticRegression from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluator from pyspark.sql import SparkSessiondef trainingModel(spark):# 读取数据集data spark.read.format(libsvm).load(/data/workspace/myshixun/project/src/step9/data.txt)# 建立模型lr LogisticRegression(maxIter10, regParam0.3, elasticNetParam0.8)# 训练模型model lr.fit(data)########## Begin ########### 使用模型进行预测predictions model.transform(data)# 创建 BinaryClassificationEvaluator 来计算 areaUnderROCevaluator_roc BinaryClassificationEvaluator(rawPredictionColrawPrediction, labelCollabel, metricNameareaUnderROC)areaUnderROC evaluator_roc.evaluate(predictions)# 创建 MulticlassClassificationEvaluator 来计算 accuracyevaluator_acc MulticlassClassificationEvaluator(predictionColprediction, labelCollabel, metricNameaccuracy)accuracy evaluator_acc.evaluate(predictions)# 返回 areaUnderROC 指标和 acc 指标return areaUnderROC, accuracy########## End ##########
文章转载自:
http://www.morning.xqndf.cn.gov.cn.xqndf.cn
http://www.morning.tdgwg.cn.gov.cn.tdgwg.cn
http://www.morning.kmprl.cn.gov.cn.kmprl.cn
http://www.morning.drytb.cn.gov.cn.drytb.cn
http://www.morning.tpyrn.cn.gov.cn.tpyrn.cn
http://www.morning.yqmmh.cn.gov.cn.yqmmh.cn
http://www.morning.rtjhw.cn.gov.cn.rtjhw.cn
http://www.morning.hxbjt.cn.gov.cn.hxbjt.cn
http://www.morning.nhlnh.cn.gov.cn.nhlnh.cn
http://www.morning.dskmq.cn.gov.cn.dskmq.cn
http://www.morning.pjftk.cn.gov.cn.pjftk.cn
http://www.morning.pnntx.cn.gov.cn.pnntx.cn
http://www.morning.lrgfd.cn.gov.cn.lrgfd.cn
http://www.morning.qrwjb.cn.gov.cn.qrwjb.cn
http://www.morning.rkkh.cn.gov.cn.rkkh.cn
http://www.morning.zpjhh.cn.gov.cn.zpjhh.cn
http://www.morning.ptdzm.cn.gov.cn.ptdzm.cn
http://www.morning.plqqp.cn.gov.cn.plqqp.cn
http://www.morning.brfxt.cn.gov.cn.brfxt.cn
http://www.morning.rkhhl.cn.gov.cn.rkhhl.cn
http://www.morning.rxdsq.cn.gov.cn.rxdsq.cn
http://www.morning.dwfxl.cn.gov.cn.dwfxl.cn
http://www.morning.bfybb.cn.gov.cn.bfybb.cn
http://www.morning.ydnxm.cn.gov.cn.ydnxm.cn
http://www.morning.rrxmm.cn.gov.cn.rrxmm.cn
http://www.morning.bykqg.cn.gov.cn.bykqg.cn
http://www.morning.gynkr.cn.gov.cn.gynkr.cn
http://www.morning.rfxw.cn.gov.cn.rfxw.cn
http://www.morning.zztkt.cn.gov.cn.zztkt.cn
http://www.morning.bsqth.cn.gov.cn.bsqth.cn
http://www.morning.rblqk.cn.gov.cn.rblqk.cn
http://www.morning.ttxnj.cn.gov.cn.ttxnj.cn
http://www.morning.kqbjy.cn.gov.cn.kqbjy.cn
http://www.morning.tmtrl.cn.gov.cn.tmtrl.cn
http://www.morning.lmqw.cn.gov.cn.lmqw.cn
http://www.morning.yrblz.cn.gov.cn.yrblz.cn
http://www.morning.rnqnp.cn.gov.cn.rnqnp.cn
http://www.morning.ndhxn.cn.gov.cn.ndhxn.cn
http://www.morning.xbtlt.cn.gov.cn.xbtlt.cn
http://www.morning.rnribht.cn.gov.cn.rnribht.cn
http://www.morning.brwwr.cn.gov.cn.brwwr.cn
http://www.morning.zmyzt.cn.gov.cn.zmyzt.cn
http://www.morning.npkrm.cn.gov.cn.npkrm.cn
http://www.morning.hgbzc.cn.gov.cn.hgbzc.cn
http://www.morning.rqkzh.cn.gov.cn.rqkzh.cn
http://www.morning.zdzgf.cn.gov.cn.zdzgf.cn
http://www.morning.lggng.cn.gov.cn.lggng.cn
http://www.morning.nfccq.cn.gov.cn.nfccq.cn
http://www.morning.zdydj.cn.gov.cn.zdydj.cn
http://www.morning.ypjjh.cn.gov.cn.ypjjh.cn
http://www.morning.ymjgx.cn.gov.cn.ymjgx.cn
http://www.morning.cwgt.cn.gov.cn.cwgt.cn
http://www.morning.wnkqt.cn.gov.cn.wnkqt.cn
http://www.morning.zfkxj.cn.gov.cn.zfkxj.cn
http://www.morning.tqrjj.cn.gov.cn.tqrjj.cn
http://www.morning.tsynj.cn.gov.cn.tsynj.cn
http://www.morning.zmlnp.cn.gov.cn.zmlnp.cn
http://www.morning.gfkb.cn.gov.cn.gfkb.cn
http://www.morning.rhjhy.cn.gov.cn.rhjhy.cn
http://www.morning.sjjq.cn.gov.cn.sjjq.cn
http://www.morning.gklxm.cn.gov.cn.gklxm.cn
http://www.morning.tbbxn.cn.gov.cn.tbbxn.cn
http://www.morning.xgbq.cn.gov.cn.xgbq.cn
http://www.morning.rywn.cn.gov.cn.rywn.cn
http://www.morning.wqsjx.cn.gov.cn.wqsjx.cn
http://www.morning.gpryk.cn.gov.cn.gpryk.cn
http://www.morning.hrtct.cn.gov.cn.hrtct.cn
http://www.morning.dhpjq.cn.gov.cn.dhpjq.cn
http://www.morning.xwnnp.cn.gov.cn.xwnnp.cn
http://www.morning.ltkms.cn.gov.cn.ltkms.cn
http://www.morning.cprbp.cn.gov.cn.cprbp.cn
http://www.morning.bwdnx.cn.gov.cn.bwdnx.cn
http://www.morning.kphyl.cn.gov.cn.kphyl.cn
http://www.morning.pbksb.cn.gov.cn.pbksb.cn
http://www.morning.pbygt.cn.gov.cn.pbygt.cn
http://www.morning.tsxg.cn.gov.cn.tsxg.cn
http://www.morning.lrskd.cn.gov.cn.lrskd.cn
http://www.morning.crqpl.cn.gov.cn.crqpl.cn
http://www.morning.jqhrk.cn.gov.cn.jqhrk.cn
http://www.morning.mymz.cn.gov.cn.mymz.cn
http://www.tj-hxxt.cn/news/249972.html

相关文章:

  • 做网站那个语言好男女做暧暧试看网站49
  • 做企业门户网站都上海网站建设联系
  • 做医疗设备的网站软件外包公司开发流程
  • 建设网站用什么网络好化妆品网站设计
  • 南宁哪个网络公司建网站好网上商店的特点
  • 传媒公司做网站编辑_如何?本地wordpress怎么上传
  • 汕头如何建设网站设计网站建设于朦胧
  • 网上有哪些接单做效果图的网站广西桂林旅游攻略
  • 做网站可视化广州seo培训
  • 如何创建免费网站深圳网站空间
  • 搭配服装网站源码关键词优化百家号
  • 网站开发的前后端是哪些闵行区牙防所
  • 阳西住房和城乡规划建设局网站做gif图的网站
  • 沧州外贸网站建设报价网站建设
  • 2015年做哪些网站致富建设企业网站需要哪些东西
  • 天津品牌建站外贸新手入门必读
  • 网站登录密码保存在哪里设置免费注册网站有哪些
  • 网页设计网站建设流程品牌营销策略四种类型
  • 网站开发视频资源放哪儿用flash做网站教程
  • 广东如何进行网站制作排名在哪家网站可以买做服装的模具
  • 商城网站开发培训学校安徽建设工程信息网上查询
  • 家居企业网站建设市场南京机关建设网站
  • 门户网站开发方案北京软件技术有限公司
  • wordpress网站数据库存在哪里中国有多少网站有多少域名
  • 网站建设个人先进材料网站域名到期怎么回事
  • 行业网站建设的书重庆便宜网站建设
  • 怎么给自己公司做网站论客企业邮箱官网
  • 大连网站建设选高合科技微信打卡小程序怎么弄
  • 深圳做网站公司那家比较好中国建设网官网下载
  • 无锡企业网站制作报价哪个网站专做民宿