当前位置: 首页 > news >正文

成绩查询系统网站开发装修网名字大全

成绩查询系统网站开发,装修网名字大全,网站开发 前台代码,天津网页制作设计前言 大语言模型#xff08;LLM#xff09;自面世以来即展示了其创新能力#xff0c;但 LLM 面临着幻觉等挑战。如何通过整合外部数据库的知识#xff0c;检索增强生成#xff08;RAG#xff09;已成为通用和可行的解决方案。这提高了模型的准确性和可信度#xff0c;特… 前言 大语言模型LLM自面世以来即展示了其创新能力但 LLM 面临着幻觉等挑战。如何通过整合外部数据库的知识检索增强生成RAG已成为通用和可行的解决方案。这提高了模型的准确性和可信度特别是对于知识密集型任务并允许持续的知识更新和特定领域信息的集成。在 RAG 过程中通常向量数据库会是其非常重要的组件主要体现在数据存储、高效查询等方面它可以为 RAG 提供丰富的数据来源和输入方式并支持高效的计算和处理从而促进生成式 AI 的发展和应用。Amazon DocumentDB兼容 MongoDB现已支持向量数据库以毫秒级的响应时间存储、索引和搜索数百万个向量。向量是非结构化数据的数字表示例如文本由机器学习ML模型创建有助于捕捉底层数据的语义含义。Amazon DocumentDB 的向量搜索可以存储来自 Amazon Bedrock、Amazon SageMaker以及其他第三方或专有模型等的向量。 借助 Amazon DocumentDB 的向量搜索功能Vector Search可以轻松地为机器学习包括生成式 AI 应用程序设置、操作和扩展向量数据库。在一个云原生文档数据库引擎里 实现向量和业务标量数据的统一管理不再需要花费大量时间熟悉和管理独立的专用向量数据库引擎以及跨数据引擎同步数据。向量搜索功能与 LLM 相结合能够根据含义搜索数据库从而解锁各种用例包括语义搜索、产品推荐、个性化和聊天机器人。 Amazon DocumentDB 的向量搜索将 JSON 文档数据库的灵活性、丰富的查询功能、全文检索与向量搜索的能力相结合。使用现有 Amazon DocumentDB 灵活的文档结构数据结合向量数据存储、索引最多可支持索引 2000 维目前支持 IVFFlat 和 HNSW 索引和搜索 来构建机器学习和生成 AI 用例如语义搜索体验、产品推荐、个性化、聊天机器人、欺诈检测和异常检测。Amazon DocumentDB 的向量搜索在所有可用 Amazon DocumentDB 的区域基于 DocumentDB 5.0 实例的集群上可用。 Amazon DocumentDB 支持全文检索可以针对文本索引字段中搜索部分或全部关键字对大型字符串数据执行特定术语或短语的文本搜索使用权重为索引字段分配不同的级别并根据相关性对搜索结果进行排序。可以用于帮助客户构建知识库系统。和向量查询结合可以实现 RAG 双路召回的功能。Amazon DocumentDB 结合向量和文本搜索可实现混合搜索使用双路召回的方式对用户的查询进行检索分别对查询语句和文档进行向量化和相似度计算以及基于分词的全文检索两个查询并行执行。而针对返回的结果再根据特定的逻辑进行合并和排序比如加权平均、排序融合等双壁合一得到一个最终的检索结果集合。使用混合搜索来实现双路召回的优势是它可以克服向量检索和关键词检索各自的局限性 获得更精准和更多样化的检索结果。 本文将展示如何采用 Amazon DocumentDB 和 Amazon Bedrock 构建游戏行业产品推荐文中的 Demo 已经接入了目前最新发布的 Bedrock Claude 3 Sonnet 模型。Anthropic 目前的评估表明Claude 3 模型系列在数学应用题解决MATH和多语言数学MGSM基准目前用于大语言模型的关键基准方面优于同类模型。另外我们使用了 Amazon Bedrock Titan 模型来生成向量并使用 DocumentDB 将 Titan 生成的向量存储在 Amazon DocumentDB 数据库中利用 DocumentDB Vector Search 的相似性向量搜索和 DocumentDB Text Search 全文检索功能实现 RAG 双路召回并将 RAG 双路召回合并结果返回给 Amazon Bedrock Claude 3 Sonnet进行内容总结归并。 架构 环境部署 通过 Cloudformation 部署所需的资源 区域请选择 us-east-1 为了简化示例环境的入门体验我们创建了 Amazon CloudFormation 基础模板来设置示例环境所需的资源。这些模板旨在部署一致的网络基础设施和客户端体验的软件包和组件方便示例的开展。 在亚马逊云科技控制台上点击 CloudFormation 页面点击 Launch Stackcreate stack按钮来初始化您的环境。 请选择 Template source: Amazon S3 URL请选择 Amazon S3 URL: https://xiekl.s3.cn-northwest-1.amazonaws.com.cn/docdb-vector-search-indutry-lab.yaml 在名为“Stack Name”的字段中填入值为 docdb-vector-search-lab 点击“下一步” 在下一页接受默认设置点击“下一步”。在最后一页滚动到底部选中确认创建 IAM 资源的复选框然后点击“创建堆栈” 该 Stack 会创建: 一个新的 VPC、相关的子网、路由等一个 docDB 数据库集群一个 SageMaker Notebook 实例支持的角色 完成这些配置大约需要十几分钟时间。您可以在主堆栈的堆栈详情页面监控状态 一旦状态变为 CREATE_COMPLETE点击 Outputs 选项卡记下 DBEndpint 和 NotebookInstanceURL 以备后用 赋予所访问的 Amazon Bedrock  大语言模型权限 访问 Amazon Bedrock Model Access 页面https://us-east-1.console.aws.amazon.com/bedrock/home?regionus-east-1#modelaccess选择 Manage Model Access 选中 Titan Embedding G1- Text 和 Claude 模型左侧的 checkbox然后 save changes。 看到两个模型的 Access Status 为Access granted 使用 Juypter Notebook 本示例采用了 Jupyter Notebook 来与 Bedrock 和 DocumentDB 数据库进行交互。Jupyter Notebook 是一个开源 Web 应用程序您可以用它来创建和共享包含实时代码、计算、可视化和叙述文本的文档。 打开 Jupyter Notebook 1. 转到 Amazon SageMaker 控制台列出正在运行的 notebook 实例。您应该看到一个正在运行的实例单击打开 Jupyter 的链接 2. 点击 Open Jupyter点击 Two-way-recall 目录 3. 点击 genai-docdb-similiarity-search-gaming.ipynb 文件以加载 Notebook 内容 4. 在下拉菜单中选择 conda_python3 内核然后点击 “设置内核” 。您可以在右上角查看所选的内核如果您想更改现有的内核 在 Notebook 中执行相似度查询 现在我们来构建游戏推荐方案用户输入大致的游戏描述系统能进行游戏推荐。 查找相似游戏的一个核心组件是把用户描述对应的固定长度的句子或者词进行向量化也就是抽取“特征向量”。通常情况下这些向量是离线生成并存储起来的以便后续查找时实现快速检索。本示例中使用了 Amazon Bedrock Titan 模型来生成向量数据。 为了实现对文本相似项目的高效搜索我们使用 Amazon Bedrock Titan 模型生成固定长度的句子 Embedding即“特征向量”并使用 Amazon DocumentDB (MongoDB compatibility) 的 Vector Search 实现最近邻搜索扩展。DocumentDB Vector search 允许您存储和搜索向量空间中的点并为这些点找到“最近邻”。使用案例包括产品推荐基于搜索输入匹配到最相近的产品、图像识别和欺诈检测。 为了后续的全文检索基于游戏英文描述做 Text Index目前 DocumentDB 仅支持基于英文词根进行全文检索 所以基于游戏英文描述创建索引。 本示例构建步骤为 1初始设置准备环境调用 Amazon Bedrock Titan 模型 2将游戏 example dataset 生成特征向量 3把这些特征向量存储在 Amazon DocumentDB 向量数据类型中创建向量索引。 基于游戏英文描述创建文本索引 4探索一些示例查询通过执行 DocumentDB 向量和文本搜索实现 RAG 双路召回合并双路召回结果并结合 Bedrock Claude LLM 形成可视化结果。 具体步骤 安装示例所需的 python 库 !pip install -U pymongo  tqdm boto3 requests scikit-image 游戏 demo 数据 example: [{“url”: “游戏图片url”,“name”: “游戏名称”,“descriptions”: [“游戏类别:免费开玩;英雄射击;多人;第一人称射击;射击”,“游戏介绍: xxxxxx”,“成人内容描述: 无暴力血腥。”],“descriptions_en”:[“Game genres: Free to Play;Battle Royale;Multiplayer;Shoote”,“Game Introduction: xxxxxx”,“MATURE CONTENT DESCRIPTION: No violence or gore.”],“recommendation”: “内存: 8 GB RAM,DirectX 版本: 11,网络: 宽带互联网连接,存储空间: 需要 35 GB 可用空间”}] import urllib.request import os import json import boto3 from multiprocessing import cpu_count from tqdm.contrib.concurrent import process_map filename metadata.jsonwith open(filename) as json_file:results json.load(json_file) if not os.path.exists(filename):print (metadata.json file not exits) results[0] print(results[0]) Bedrock 模型环境准备 安装 langchain # for bedrock model call %pip install langchain0.0.305 --force-reinstall 创建 Bedrock Client #for bedrock model call import json import os import sysimport boto3bedrock_client boto3.client(bedrock-runtime, region_nameus-east-1) 准备 Bedrock Titan 模型调用为后续生成 Embedding 数据 # for bedrock model call from langchain.embeddings import BedrockEmbeddingsbedrock_embeddings BedrockEmbeddings(model_idamazon.titan-embed-text-v1,                                  clientbedrock_client) 准备 Bedrock LLM Claude3 模型调用并计算 LLM 执行时间 # calculate your LLM(Claude3) execution time import timedef timer_llm_claude3(prompt, if_print1):start_time time.time()body json.dumps({max_tokens: 4096,messages: [{role: user, content: prompt}],anthropic_version: bedrock-2023-05-31})response bedrock_client.invoke_model(bodybody, modelIdanthropic.claude-3-sonnet-20240229-v1:0)response_body json.loads(response.get(body).read())end_time time.time()elapsed_time end_time - start_timeif if_print 1:print(----------------------------------------- OutPut -----------------------------------------)print(Elapsed time: , elapsed_time, seconds)return response_body.get(content)[0][text] Bedrock Titan 模型调用生成 Embedding 数据 # for Bedrock Embedding model calldef generate_embeddings(data):r bedrock_embeddings.embed_query(data)return r 在这一步中我们将获取产品描述以及生成的向量并将这些向量存储到 DocumentDB 中通过调用函数 generate_embeddings调用 Amazon Bedrock Titan 生成 Embedding 数据。 建立与 DocumentDB 的数据库连接 # Set up a connection to your Amazon DocumentDB (MongoDB compatibility) cluster and creating the database import pymongoclient pymongo.MongoClient( docdb-vector-search-*******.com:27017, usernamemasteruser, password******, retryWritesFalse, tlstrue, tlsCAFileglobal-bundle.pem) db client.similarity collection db.games 修改 docDB Cluster Endpoint为CloudFormation output docDB endpoint修改 password” Password1″ 生成向量数据并将向量数据存储到 docDB创建 docDB 向量索引IvFflat 算法相似度欧距维度1536 import pymongo import boto3 import json for x in results:description1 .join(x.get(descriptions, []))vector generate_embeddings(description1)record { name: x.get(name),descriptions: description1,descriptions_en: .join(x.get(descriptions_en, [])),recommendation:x.get(recommendation),url: x.get(url),descriptions_embeddings: vector}rec_id1 collection.insert_one(record)   collection.create_index ([(descriptions_embeddings,vector)], vectorOptions{ lists: 1, similarity: euclidean, dimensions: 1536}) 基于游戏英文描述字段创建文本索引 #DocumentDB Text Search collection.create_index({descriptions_en: text}) 执行 DocumentDB 向量和文本搜索生成 RAG 双路召回合并召回结果游戏推荐结果同时会形成 Prompt 调用 Bedrock Claude 模型来完成推荐内容总结归并并判断游戏是否适合未成年人 from skimage import io import matplotlib.pyplot as plt import requests from langchain.prompts import PromptTemplatemulti_var_prompt PromptTemplate(input_variables[instructions], template Human: 你是一个优秀的游戏推荐员需要你进行游戏的总结推荐Objective - 带上游戏名称和游戏类别 - 附上游戏介绍需要进行优化总结 - 指出玩该游戏需要的主机配置 - 判断是否适合未成年人玩 /Objectiveinstructions {instructions} /instructions 你的目标是根据Objective里的目标列出instructions里的游戏名称游戏类别游戏介绍用户的主机配置并判断该游戏是否适合未成年人不需要有其他无关的文字内容Assistant:)def similarity_search(search_text):en_response timer_llm_claude3(你是一位翻译人员将以下翻译成英文不要多余的话术只要翻译即可翻译后的内容需要去掉game这个单词search_text)print(en_response)data {inputs: search_text}res1 generate_embeddings(data[inputs]) 向量搜索返回相似度最接近的两个产品 #Vector Search 向量搜索 返回相似度最接近的两个产品query {vectorSearch : {vector : res1, path: descriptions_embeddings, similarity: euclidean, k: 2}}projection {_id:0,name:1,recommendation:1,url:1,descriptions:1,descriptions_en:1,descriptions_embeddings: 1}r collection.aggregate([{$search: query},{$project: projection}]) 基于游戏英文描述进行文本搜索按返回 Score 进行排序 #Text Search 基于游戏英文描述进行文本搜索 按返回Score进行排序tsr collection.find({$text: {$search: en_response}}, {score: {$meta: textScore}}).sort({score: {$meta: textScore}})urls []plt.rcParams[figure.figsize] [7.50, 3.50]plt.rcParams[figure.autolayout] True 合并 RAG 双路召回结果 # merge two-way recall result 合并RAG双路召回结果merged_list []for doc in tsr:merged_list.append(doc)for doc in r:merged_list.append(doc)unique_set set() result []for item in merged_list:dict_str str(item[name])print(dict_str)if dict_str not in unique_set and len(result)2:unique_set.add(dict_str)result.append(item)   for x in result:# print(x)# Pass in values to the input variablesprompt multi_var_prompt.format(instructions游戏名称:x[name] .\n游戏描述: x[descriptions] .\n主机配置建议 x[recommendation])response timer_llm_claude3(prompt)print(response)url x[url].split(?)[0]urldata requests.get(url).contenta io.imread(url)plt.imshow(a)plt.axis(off)plt.show() 现在我们调用上面的函数进行一些搜索。比如输入多人射击游戏 similarity_search(“多人射击游戏”) 以下是根据上述向量和文本搜索生成 RAG 双路召回合并双路召回结果结合 LLM 形成的游戏推荐内容 ——————OutPut —————— Elapsed time:  4.0840065479278564 seconds 游戏名称虚拟射击游戏 1游戏类别免费开玩、英雄射击、多人、第一人称射击、射击 游戏介绍虚拟射击游戏 1 是一款免费的大逃杀英雄射击游戏玩家可控制各种拥有独特技能的传奇角色体验战术小队玩法和创新游戏元素在边境之地与其他玩家展开激烈对决。游戏提供丰富的角色选择、深度的战术玩法和革新元素带来全新的大逃杀竞技体验。 主机配置– 内存8 GB RAM– DirectX 版本11– 网络宽带互联网连接– 存储空间需要 35GB 可用空间 适合年龄由于游戏没有暴力血腥内容适合未成年人玩。 ——————OutPut —————— Elapsed time3.8321468830108643游戏名称虚拟射击游戏 2游戏类别第一人称射击射击多人竞技动作电竞 优化总结虚拟射击游戏 2 是一款优秀的竞技类第一人称射击游戏提供了逼真的渲染效果、先进的网络系统、强大的社区创意工坊工具等。游戏包含全球及区域排行榜、升级后的地图、动态烟雾弹等新元素为玩家带来革命性的游戏体验。此外游戏还拥有全新设计的声画效果令画面声音更加震撼。 主机配置内存8 GB RAM显卡1 GB 或以上DirectX 版本11存储空间需要 85 GB 可用空间 不适合未成年人虚拟射击游戏 2 包含强烈的暴力和血腥内容因此不太适合未成年人游玩。 总结 将 Amazon DocumentDB 和 Amazon Bedrock 无缝集成在同一个 Amazon DocumentDB 云原生文档数据库引擎中将向量和业务标量数据统一存储将向量搜索和文本搜索无缝集成能够快速构建 RAG 双路召回为优化基于 LLM 产品目录相似性搜索体验提供了高效的解决方案。企业可以提高相似性搜索、个性化推荐和欺诈检测的准确性和速度由此进一步提高用户满意度和提供更加个性化的体验。 本篇作者 刘冰冰 亚马逊云科技数据库解决方案架构师负责基于亚马逊云科技的数据库解决方案的咨询与架构设计同时致力于大数据方面的研究和推广。在加入亚马逊云科技之前曾在 Oracle 工作多年在数据库云规划、设计运维调优、DR 解决方案、大数据和数仓以及企业应用等方面有丰富的经验。 周宇翔 亚马逊云科技解决方案架构师负责基于亚马逊云科技的云计算方案架构的咨询和设计在 EdgeServerless 等方向具有丰富的实践经验。目前专注于游戏行业。 星标不迷路开发更极速 关注后记得星标「亚马逊云开发者」 听说点完下面4个按钮 就不会碰到bug了
文章转载自:
http://www.morning.tfpbm.cn.gov.cn.tfpbm.cn
http://www.morning.hxrg.cn.gov.cn.hxrg.cn
http://www.morning.bkfdf.cn.gov.cn.bkfdf.cn
http://www.morning.jfxth.cn.gov.cn.jfxth.cn
http://www.morning.wdprz.cn.gov.cn.wdprz.cn
http://www.morning.rmqmc.cn.gov.cn.rmqmc.cn
http://www.morning.wmqrn.cn.gov.cn.wmqrn.cn
http://www.morning.mwbqk.cn.gov.cn.mwbqk.cn
http://www.morning.sgpny.cn.gov.cn.sgpny.cn
http://www.morning.xrsqb.cn.gov.cn.xrsqb.cn
http://www.morning.pxwzk.cn.gov.cn.pxwzk.cn
http://www.morning.jfbrt.cn.gov.cn.jfbrt.cn
http://www.morning.kybpj.cn.gov.cn.kybpj.cn
http://www.morning.wnjrf.cn.gov.cn.wnjrf.cn
http://www.morning.tmxfn.cn.gov.cn.tmxfn.cn
http://www.morning.mqbdb.cn.gov.cn.mqbdb.cn
http://www.morning.gidmag.com.gov.cn.gidmag.com
http://www.morning.bpp999.com.gov.cn.bpp999.com
http://www.morning.mfcbk.cn.gov.cn.mfcbk.cn
http://www.morning.gtmdq.cn.gov.cn.gtmdq.cn
http://www.morning.fkwgk.cn.gov.cn.fkwgk.cn
http://www.morning.fpxsd.cn.gov.cn.fpxsd.cn
http://www.morning.ycmpk.cn.gov.cn.ycmpk.cn
http://www.morning.scjtr.cn.gov.cn.scjtr.cn
http://www.morning.dxpqd.cn.gov.cn.dxpqd.cn
http://www.morning.sbpt.cn.gov.cn.sbpt.cn
http://www.morning.5-73.com.gov.cn.5-73.com
http://www.morning.pggkr.cn.gov.cn.pggkr.cn
http://www.morning.hyfrd.cn.gov.cn.hyfrd.cn
http://www.morning.lktjj.cn.gov.cn.lktjj.cn
http://www.morning.bsrp.cn.gov.cn.bsrp.cn
http://www.morning.rfqkx.cn.gov.cn.rfqkx.cn
http://www.morning.sxhdzyw.com.gov.cn.sxhdzyw.com
http://www.morning.yjqkk.cn.gov.cn.yjqkk.cn
http://www.morning.zcfsq.cn.gov.cn.zcfsq.cn
http://www.morning.nxdqz.cn.gov.cn.nxdqz.cn
http://www.morning.bqrd.cn.gov.cn.bqrd.cn
http://www.morning.ggcjf.cn.gov.cn.ggcjf.cn
http://www.morning.bswnf.cn.gov.cn.bswnf.cn
http://www.morning.tpdg.cn.gov.cn.tpdg.cn
http://www.morning.nbrkt.cn.gov.cn.nbrkt.cn
http://www.morning.gnjtg.cn.gov.cn.gnjtg.cn
http://www.morning.qwpdl.cn.gov.cn.qwpdl.cn
http://www.morning.dwmtk.cn.gov.cn.dwmtk.cn
http://www.morning.brzlp.cn.gov.cn.brzlp.cn
http://www.morning.dansj.com.gov.cn.dansj.com
http://www.morning.qmkyp.cn.gov.cn.qmkyp.cn
http://www.morning.qnbzs.cn.gov.cn.qnbzs.cn
http://www.morning.sfnjr.cn.gov.cn.sfnjr.cn
http://www.morning.jxfsm.cn.gov.cn.jxfsm.cn
http://www.morning.zfqr.cn.gov.cn.zfqr.cn
http://www.morning.bpxmw.cn.gov.cn.bpxmw.cn
http://www.morning.rpjyl.cn.gov.cn.rpjyl.cn
http://www.morning.tnhg.cn.gov.cn.tnhg.cn
http://www.morning.nggbf.cn.gov.cn.nggbf.cn
http://www.morning.thzwj.cn.gov.cn.thzwj.cn
http://www.morning.tckxl.cn.gov.cn.tckxl.cn
http://www.morning.fwcnx.cn.gov.cn.fwcnx.cn
http://www.morning.hjjhjhj.com.gov.cn.hjjhjhj.com
http://www.morning.brrxz.cn.gov.cn.brrxz.cn
http://www.morning.hhmfp.cn.gov.cn.hhmfp.cn
http://www.morning.zrpbf.cn.gov.cn.zrpbf.cn
http://www.morning.ypktc.cn.gov.cn.ypktc.cn
http://www.morning.wfyzs.cn.gov.cn.wfyzs.cn
http://www.morning.xphls.cn.gov.cn.xphls.cn
http://www.morning.rcttz.cn.gov.cn.rcttz.cn
http://www.morning.rrxgx.cn.gov.cn.rrxgx.cn
http://www.morning.rfxg.cn.gov.cn.rfxg.cn
http://www.morning.mwmtk.cn.gov.cn.mwmtk.cn
http://www.morning.mcjrf.cn.gov.cn.mcjrf.cn
http://www.morning.wtwhj.cn.gov.cn.wtwhj.cn
http://www.morning.bkwd.cn.gov.cn.bkwd.cn
http://www.morning.gcftl.cn.gov.cn.gcftl.cn
http://www.morning.rcrfz.cn.gov.cn.rcrfz.cn
http://www.morning.gjmbk.cn.gov.cn.gjmbk.cn
http://www.morning.dmhs.cn.gov.cn.dmhs.cn
http://www.morning.fglyb.cn.gov.cn.fglyb.cn
http://www.morning.jnoegg.com.gov.cn.jnoegg.com
http://www.morning.kqpsj.cn.gov.cn.kqpsj.cn
http://www.morning.fqqcn.cn.gov.cn.fqqcn.cn
http://www.tj-hxxt.cn/news/237640.html

相关文章:

  • wordpress站点路径郑州seo排名优化公司
  • 示范校建设平台网站wordpress 查询参数
  • 对于网站建设的提问网站建设联系方式
  • 网站访问速度自己做项目的网站
  • 一个合格的网站设计网站做支付需要准备什么
  • 设计师作品集网站图书馆网站建设的建议
  • 新乡网站建设多少钱网站页面设计模板图片
  • 娱乐网站制作做外贸的网站哪些是最好的
  • 如何刷网站流量专门帮做ppt的网站
  • 哪个软件可以做明星视频网站2024年新冠第三波症状分析
  • 溧阳做网站如何做收费会员定制网站
  • wordpress做的网站扩展性网站推广的主要方法有哪些
  • 常州网站建设公司如何手机微信app下载
  • 手机网站例子名字logo设计在线生成免费
  • 可以自学做网站吗郑州网络seo
  • 企业网站重要性大都会app下载二维码
  • 建设网站计划书开发公司土地评估费计入土地价款
  • 仿历史网站模板如何制作微信链接推广
  • 微信做的地方门户网站腾讯微信网站建设价格
  • 石家庄做网站最好的公司哪家好个体工商户如何注销
  • 山西省建设厅入晋备案网站it运维主要做什么
  • 做网站服务好写作网站哪个好
  • 深圳建站网站重庆做网站的公司有哪些
  • 上海网站建设哪家好做网站会很忙吗
  • 适合美工的设计网站沈阳网站企业
  • 网站开发视频资源放哪儿网站怎么销售
  • 建筑模板厂家联系方式给网站做seo的必要性
  • lol做视频那个网站好网站备案被注销了
  • 站长工具乱码绿色环保材料网站模板下载
  • p2c网站方案洛阳兼职网站