当前位置: 首页 > news >正文

重庆手机版建站系统信息抖音代运营报价明细表

重庆手机版建站系统信息,抖音代运营报价明细表,邢台做网站的那好,会计上网站建设做什么费用智能优化算法应用#xff1a;基于社会群体算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用#xff1a;基于社会群体算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.社会群体算法4.实验参数设定5.算法结果6.…智能优化算法应用基于社会群体算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用基于社会群体算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.社会群体算法4.实验参数设定5.算法结果6.参考文献7.MATLAB代码 摘要本文主要介绍如何用社会群体算法进行3D无线传感器网(WSN)覆盖优化。 1.无线传感网络节点模型 本文主要基于0/1模型进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心半径为 R n R_n Rn​的圆形区域该圆形区域通常被称为该节点的“感知圆盘” R n R_n Rn​称为传感器节点的感知半径感知半径与节点内置传感器件的物理特性有关假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn​,yn​,zn​)在0-1感知模型中对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp​,yp​,zp​),则节点 n n n监测到区域内点 p p p的事件发生概率为 P r ( n , p ) { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr​(n,p){1,d(n,p)≤Rn​0,esle​(1) 其中 d ( n , p ) ( x n − x p ) 2 ( y n − y p ) 2 ( z n − z p ) 2 d(n,p)\sqrt{(x_n-x_p)^2(y_n-y_p)^2 (z_n-z_p)^2} d(n,p)(xn​−xp​)2(yn​−yp​)2(zn​−zp​)2 ​为点和之间的欧式距离。 2.覆盖数学模型及分析 现假定目标监测区域为二维平面在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值且节点的感知半径r。传感器节点集则表示为 N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1​,...,xN​}(2) 其中 n o d e i { x i , y i , z i , r } node_i\{x_i,y_i,z_i,r\} nodei​{xi​,yi​,zi​,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi​,yi​,zi​)为圆心,r为监测半径的球假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z)目标点与传感器节点间的距离为 d ( n o d e i , p ) ( x i − x ) 2 ( y i − y ) 2 ( z i − z ) 2 (3) d(node_i,p)\sqrt{(x_i-x)^2(y_i-y)^2 (z_i-z)^2}\tag{3} d(nodei​,p)(xi​−x)2(yi​−y)2(zi​−z)2 ​(3) 目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci​。则该事件发生的概率 P c i P{c_i} Pci​即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei​所覆盖的概率: P c o v ( x , y , z , n o d e i ) { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov​(x,y,z,nodei​){1,ifd(nodei​,p)≤r0,esle​(4) 我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比如公式所示 C o v e r R a t i o ∑ P c o v m ∗ n ∗ l (5) CoverRatio \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatiom∗n∗l∑Pcov​​(5) 那我们的最终目标就是找到一组节点使得覆盖率最大。 3.社会群体算法 社会群体算法原理请参考https://blog.csdn.net/u011835903/article/details/119677682 社会群体算法是寻找最小值。于是适应度函数定义为未覆盖率最小即覆盖率最大。如下 f u n a r g m i n ( 1 − C o v e r R a t i o ) a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun argmin(1 - CoverRatio) argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} funargmin(1−CoverRatio)argmin(1−m∗n∗l∑Pcov​​)(6) 4.实验参数设定 无线传感器覆盖参数设定如下 %% 设定WNS覆盖参数, %% 默认输入参数都是整数如果想定义小数请自行乘以系数变为整数再做转换。 %% 比如范围1*1R0.03可以转换为100*100R3 %区域范围为AreaX*AreaY*AreaZ AreaX 100; AreaY 100; AreaZ 100; N 20 ;%覆盖节点数 R 15;%通信半径 社会群体算法参数如下 %% 设定社会群体优化参数 pop30; % 种群数量 Max_iteration30; %设定最大迭代次数 lb ones(1,3*N); ub [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)]; dim 3*N;%维度为3NN个坐标点5.算法结果 从结果来看覆盖率在优化过程中不断上升。表明社会群体算法对覆盖优化起到了优化的作用。 6.参考文献 [1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学. 7.MATLAB代码
http://www.tj-hxxt.cn/news/227566.html

相关文章:

  • 可以做动态影集的网站响应式网站排名
  • 温州网站建设 温州网站制作东莞营销网站建设服务
  • 做网站需要商标注册吗友链交换网站源码
  • 上海网站开发定制手机膜+东莞网站建设
  • 做网站给源码吗网站开发研究前景
  • 免费网站推广app河北石家庄地图
  • 搭建科技网站价格天津公共资源交易平台官网
  • 网站文字规范网站维护知识
  • 遂昌网站建设人人网
  • 网站域名如何起温州整站推广咨询
  • 建设京东商城网站淄博网站开发
  • 虚拟网站佛山应用软件开发
  • 服务器php网站打不开网络营销推广的主要形式为
  • 济南网站建站公司企业展馆展厅设计公司
  • 自创网站娄底网站建设建站
  • 做新浪网网站所需的条件网站建设经验典型
  • 微信公众号视频网站开发公司网址怎么注册步骤
  • 5151ppt网站建设厦门网站建设人才
  • 南宁网站排名优化企业公司如何做网站
  • 网站备案填写tdk标签影响网站权重
  • 摄影网站源码 国外怎么做微信点击网站打赏看片
  • 头像在线制作网站邢台wap网站建设报价
  • 天津建设公司网站海南网站建设推广
  • 手机网站设计软件网站建设公司效果
  • 有那些网站做网站加班多吗
  • 制作网站设计的总结衡水网站建设设计
  • 网站插件模块原理c2c电子商务网站开发
  • 广告网站模板下载不了国外建设网站情况
  • 温州网站排名优化怎样自己动手做微官网站
  • 官方网站下载穿越火线网站建设资讯