当前位置: 首页 > news >正文

重庆专业建网站wordpress修改 id

重庆专业建网站,wordpress修改 id,台州网站制作台州网站建设,全英文外贸网站建设Apache TVM 是一个端到端的深度学习编译框架#xff0c;适用于 CPU、GPU 和各种机器学习加速芯片。更多 TVM 中文文档可访问 → Apache TVM 中文站​tvm.hyper.ai/ 作者#xff1a;Hua Jiang 本教程介绍如何将「Pipeline Executor」与 Relay 配合使用。 import tvm from t…Apache TVM 是一个端到端的深度学习编译框架适用于 CPU、GPU 和各种机器学习加速芯片。更多 TVM 中文文档可访问 → Apache TVM 中文站​tvm.hyper.ai/ 作者Hua Jiang 本教程介绍如何将「Pipeline Executor」与 Relay 配合使用。 import tvm from tvm import te import numpy as np from tvm.contrib import graph_executor as runtime from tvm.relay.op.contrib.cutlass import partition_for_cutlass from tvm import relay from tvm.relay import testing import tvm.testing from tvm.contrib.cutlass import finalize_modulesimg_size 8创建一个简单的网络这个网络也可以是一个预训练的模型。​ 创建一个由 convolution、batch normalization、dense 和 ReLU activation 组成的网络用于演示。 def get_network():out_channels 16batch_size 1data relay.var(data, relay.TensorType((batch_size, 3, img_size, img_size), float16))dense_weight relay.var(dweight, relay.TensorType((batch_size, 16 * img_size * img_size), float16))weight relay.var(weight)bn_gamma relay.var(bn_gamma)bn_beta relay.var(bn_beta)bn_mmean relay.var(bn_mean)bn_mvar relay.var(bn_var)simple_net relay.nn.conv2d(datadata, weightweight, kernel_size(3, 3), channelsout_channels, padding(1, 1))simple_net relay.nn.batch_norm(simple_net, bn_gamma, bn_beta, bn_mmean, bn_mvar)[0]simple_net relay.nn.relu(simple_net)simple_net relay.nn.batch_flatten(simple_net)simple_net relay.nn.dense(simple_net, dense_weight)simple_net relay.Function(relay.analysis.free_vars(simple_net), simple_net)data_shape (batch_size, 3, img_size, img_size)net, params testing.create_workload(simple_net)return net, params, data_shapenet, params, data_shape get_network()将网络拆分成两个子图。​ 这个来自单元测试的名为「graph_split」的函数只是一个例子。用户可以创建自定义逻辑来拆分计算图。 import inspect import ostutorial_dir os.path.dirname(inspect.getfile(lambda: None)) os.sys.path.append(os.path.join(tutorial_dir, ../../../tests/python/relay)) from test_pipeline_executor import graph_split将网络拆分成两个子图。 split_config [{op_name: nn.relu, op_index: 0}] subgraphs graph_split(net[main], split_config, params)生成的子图如下所示。 #subgraphs[0])def main(%data: Tensor[(1, 3, img_size, img_size), float16]) {%0 nn.conv2d(%data, meta[relay.Constant][0] /* tyTensor[(16, 3, 3, 3), float16] */, padding[1, 1, 1, 1], channels16, kernel_size[3, 3]) /* tyTensor[(1, 16, img_size, img_size), float16] */;%1 nn.batch_norm(%0, meta[relay.Constant][1] /* tyTensor[(16), float16] */, meta[relay.Constant][2] /* tyTensor[(16), float16]*/, meta[relay.Constant][3] /* tyTensor[(16), float16] */, meta[relay.Constant][4] /* tyTensor[(16), float16] */) /* ty(Tensor[(1,16, img_size, img_size), float16], Tensor[(16), float16], Tensor[(16), float16]) */;%2 %1.0;nn.relu(%2) /* tyTensor[(1, 16, img_size, img_size), float16] */}#subgraphs[1]def main(%data_n_0: Tensor[(1, 16, 8, 8), float16] /* tyTensor[(1, 16, 8, 8), float16] */) {%0 nn.batch_flatten(%data_n_0) /* tyTensor[(1, 1024), float16] */;nn.dense(%0, meta[relay.Constant][0] /* tyTensor[(1, 1024), float16] */, unitsNone) /* tyTensor[(1, 1), float16] */}用 cutlass target 构建子图。​ cutlass tvm.target.Target({kind: cutlass,sm: int(tvm.target.Target(cuda).arch.split(_)[1]),use_3xtf32: True,split_k_slices: [1],profile_all_alignments: False,find_first_valid: True,use_multiprocessing: True,use_fast_math: False,tmp_dir: ./tmp,},hosttvm.target.Target(llvm), )def cutlass_build(mod, target, paramsNone, target_hostNone, mod_namedefault):target [target, cutlass]lib relay.build_module.build(mod, targettarget, paramsparams, target_hosttarget_host, mod_namemod_name)return lib使用 pipeline executor 在 pipeline 中运行两个子图。​ 在 cmake 中将 USE_PIPELINE_EXECUTOR 和 USE_CUTLASS 设置为 ON。 from tvm.contrib import graph_executor, pipeline_executor, pipeline_executor_build创建子图 pipeline 配置。将子图模块与 target 关联起来。使用 CUTLASS BYOC 构建第二个子图模块。 mod0, mod1 subgraphs[0], subgraphs[1] # 将 cutlass 作为 codegen。 mod1 partition_for_cutlass(mod1)获取 pipeline executor 配置对象。 pipe_config pipeline_executor_build.PipelineConfig()设置子图模块的编译 target。 pipe_config[mod0].target llvm pipe_config[mod0].dev tvm.cpu(0)将第二个子图模块的编译 target 设置为 cuda。 pipe_config[mod1].target cuda pipe_config[mod1].dev tvm.device(cuda, 0) pipe_config[mod1].build_func cutlass_build pipe_config[mod1].export_cc nvcc # 通过连接子图模块创建 pipeline。 # 全局输入将被转发到第一个名为 mod0 的模块的输入接口 pipe_config[input][data].connect(pipe_config[mod0][input][data]) # mod0 的第一个输出会转发到 mod1 的输入接口 pipe_config[mod0][output][0].connect(pipe_config[mod1][input][data_n_0]) # mod1 的第一个输出将是第一个全局输出。 pipe_config[mod1][output][0].connect(pipe_config[output][0])pipeline 配置如下 print(pipe_config)Inputs|data: mod0:dataoutput|output(0) : mod1.output(0)connections|mod0.output(0)- mod1.data_n_0构建 pipeline executor。​ with tvm.transform.PassContext(opt_level3):pipeline_mod_factory pipeline_executor_build.build(pipe_config)输出结果 /workspace/python/tvm/driver/build_module.py:267: UserWarning: target_host parameter is going to be deprecated. Please pass in tvm.target.Target(target, hosttarget_host) instead.target_host parameter is going to be deprecated. 将参数配置导出到一个文件中。 directory_path tvm.contrib.utils.tempdir().temp_dir os.makedirs(directory_path, exist_okTrue) config_file_name pipeline_mod_factory.export_library(directory_path)使用 load 函数创建和初始化 PipelineModule。​ pipeline_module pipeline_executor.PipelineModule.load_library(config_file_name)运行 pipeline executor。​ 分配输入数据。 data np.random.uniform(-1, 1, sizedata_shape).astype(float16) pipeline_module.set_input(data, tvm.nd.array(data))以 pipeline 模式运行两个子图异步或同步获取输出。以下示例为同步获取输出。 pipeline_module.run() outputs pipeline_module.get_output()使用 graph_executor 进行验证。​ 用 graph_executor 依次运行这两个子图得到输出。 target llvm dev0 tvm.device(target, 0) lib0 relay.build_module.build(mod0, target, paramsparams) module0 runtime.GraphModule(lib0[default](dev0)) cuda tvm.target.Target(cuda, hosttvm.target.Target(llvm)) lib1 relay.build_module.build(mod1, [cuda, cutlass], paramsparams) lib1 finalize_modules(lib1, compile.so, ./tmp)dev1 tvm.device(cuda, 0)module1 runtime.GraphModule(lib1[default](dev1))module0.set_input(data, data) module0.run() out_shape (1, 16, img_size, img_size) out module0.get_output(0, tvm.nd.empty(out_shape, float16)) module1.set_input(data_n_0, out) module1.run() out_shape (1, 1) out module1.get_output(0, tvm.nd.empty(out_shape, float16))输出结果 /workspace/python/tvm/driver/build_module.py:267: UserWarning: target_host parameter is going to be deprecated. Please pass in tvm.target.Target(target, hosttarget_host) instead.target_host parameter is going to be deprecated. 验证结果。 tvm.testing.assert_allclose(outputs[0].numpy(), out.numpy())下载 Python 源代码using_pipeline_executor.py 下载 Jupyter Notebookusing_pipeline_executor.ipynb
http://www.tj-hxxt.cn/news/225662.html

相关文章:

  • 网站 注册模块怎么做正规网站备案信息表
  • 扬州外贸网站建设wordpress 古风主题
  • 网站建设论文答辩自述网站开发需要兼容到ie几
  • 展厅设计制作网站如何是网站排名上升
  • 化州网站建设公司网站推广策划书目录
  • 怎么查网站是谁建的30天网站建设实录 pdf
  • 网站建设主动型电话销售话术一个网站两个空间
  • 门户网站系统有哪些平台玉溪做网站
  • 海外营销网站建设中天建设集团有限公司第九建设公司
  • 如何攻克房地产网站西地那非最佳吃法
  • 商务局网站建设方案酒店网站html
  • 网站js下载网站建设 推广信息
  • 怎么在网站文本框内做超连接做食品研发都有哪些网站
  • 上海安全建设协会网站freenom申请域名
  • 个人网站域名取名辽宁省工程造价网
  • 潍坊淘宝网站建设google seo怎么优化
  • 做旅游攻略比较好的网站wordpress淘客优惠券
  • 注册网站用什么邮箱广州做网站开发
  • 小型手机网站建设如何优化关键词搜索排名
  • 网站开发招投标书群晖wordpress慢
  • 织梦网站添加搜索功能中山网站建设文化机构
  • 做的网站 为什么百度搜不到制作网站公司价格
  • 不收费的企业查询网站专业的vi设计企业
  • 濮阳做网站公司团购网站做摄影
  • 顺德建设幼儿院报名网站网页培训机构
  • 高新区网站建设的建议网络服务器怎么设置
  • 手机建站系统源码教育机构官网
  • 网站优化如何提高排名人力资源短期培训班
  • php网站开发linuxwordpress点击慢
  • 电商网站设计图景洪市新农村建设网站