当前位置: 首页 > news >正文

国外好的电商网站有哪些有个人代做网站的吗

国外好的电商网站有哪些,有个人代做网站的吗,wordpress行业模板,越南做网站目录 1 目的 2 方法 3 源代码 4 结果 1 目的 ①熟悉 Python 的输入输出流; ②学会使用 matplotlib进行图像可视化; ③掌握神经网络的基本原理#xff0c;学会使用 sklearn 库中的 MLPClassifier 函数构建基础的多层感知机神经网络分类器; ④学会使用网格查找进行超参数优…目录 1 目的 2 方法 3 源代码 4 结果 1 目的 ①熟悉 Python 的输入输出流; ②学会使用 matplotlib进行图像可视化; ③掌握神经网络的基本原理学会使用 sklearn 库中的 MLPClassifier 函数构建基础的多层感知机神经网络分类器; ④学会使用网格查找进行超参数优化。 2 方法 ①读取并解压 mnist.gz文件并区分好训练集与测试集; ②查看数据结构对手写字符进行可视化展示; ③构建多层感知机神经网络模型并使用网格查找出最优参数; ④输出模型的最优参数以及模型的预测精度。 3 源代码 ①启动 Spyder新建.py 文件加载试验所需模块 # 导入相关模块 from sklearn.neural_network import MLPClassifier from sklearn.model_selection import GridSearchCV import numpy as np import pickle import gzip import matplotlib. pyplot as plt ②加载数据数据文件保存在 mnist.gz 安装包中因此需要对文件进行解压后对文件进行读取且区分训练集、测试集与验证集 #解压数据并进行读取 with gzip.open(rD:\大二下\数据挖掘\神经网络\mnist.gz) as fp:training_data, valid_data, test_data pickle.load(fp,encodingbytes)  #区分训练集与测试集 X_training_data,y_training_data training_data X_valid_data,y_valid_data valid_data X_test_data, y_test_data test_data ③查看数据的结构为后续建模做准备: #定义函数show_data_struct 用于展示数据的结构 def show_data_struct():print(X_training_data.shape,y_training_data.shape)print(X_valid_data.shape,y_valid_data.shape)print(X_test_data.shape,y_test_data.shape)print(X_training_data[0])print(y_training_data[0]) #使用show_data_struct 函数进行数据展示 show_data_struct() ④为了更好地了解数据的形态对手写字符进行可视化展示 #定义函数用于可视化字符的原有图像 def show_image():plt.figure(1)for i in range(10):imageX_training_data[i]pixelsimage.reshape((28,28))plt.subplot(5,2,i1)plt.imshow(pixels,cmapgray)plt.title(y_training_data[i])plt.axis(off)plt.subplots_adjust(top0.92,bottom0.08,left0.10,right0.95, hspace0.45,wspace0.85)plt.show() #使用show_image函数进行图像展示 show_image() ⑤构建参数字典用于后续使用网格查找进行超参数优化 #字典中用于存放的 MLPClassifier 函数的参数列表 mlp_clf__tuned_parameters {hidden_layer_sizes:[(100,),(100,30)],solver:[ adam, sgd, bfgs],max_iter:[20],verbose:[True]} ⑥使用MLPClassifier 丽数构建多层感知机神经网络并使用GridSearchCV 网格查找进行超参数优化找出最合适的参数 #构建多层感知机分类器 mlpMLPClassifier() #通过网格查找出最优参数 estimator GridSearchCV(mlp,mlp_clf__tuned_parameters,n_jobs6) #拟合模型 estimator.fit(X_training_data, y_training_data) #输出最优参数 print(estimator.best_params_) #输出模型的预测精度 print(estimator.score(X_test_data, y_test_data)) 4 结果 (50000, 784) (50000,) (10000, 784) (10000,) (10000, 784) (10000,) [0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.01171875 0.0703125  0.0703125  0.0703125 0.4921875  0.53125    0.68359375 0.1015625  0.6484375  0.99609375 0.96484375 0.49609375 0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.1171875  0.140625   0.3671875  0.6015625 0.6640625  0.98828125 0.98828125 0.98828125 0.98828125 0.98828125 0.87890625 0.671875   0.98828125 0.9453125  0.76171875 0.25 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0.19140625 0.9296875  0.98828125 0.98828125 0.98828125 0.98828125 0.98828125 0.98828125 0.98828125 0.98828125 0.98046875 0.36328125 0.3203125 0.3203125  0.21875    0.15234375 0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.0703125  0.85546875 0.98828125 0.98828125 0.98828125 0.98828125 0.98828125 0.7734375  0.7109375 0.96484375 0.94140625 0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.3125     0.609375   0.41796875 0.98828125 0.98828125 0.80078125 0.04296875 0.         0.16796875 0.6015625 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.0546875  0.00390625 0.6015625  0.98828125 0.3515625 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.54296875 0.98828125 0.7421875  0.0078125  0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0.04296875 0.7421875  0.98828125 0.2734375  0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.13671875 0.94140625 0.87890625 0.625      0.421875   0.00390625 0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.31640625 0.9375     0.98828125 0.98828125 0.46484375 0.09765625 0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.17578125 0.7265625  0.98828125 0.98828125 0.5859375  0.10546875 0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.0625     0.36328125 0.984375   0.98828125 0.73046875 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.97265625 0.98828125 0.97265625 0.25       0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.1796875  0.5078125  0.71484375 0.98828125 0.98828125 0.80859375 0.0078125  0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.15234375 0.578125 0.89453125 0.98828125 0.98828125 0.98828125 0.9765625  0.7109375 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.09375    0.4453125  0.86328125 0.98828125 0.98828125 0.98828125 0.98828125 0.78515625 0.3046875  0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.08984375 0.2578125  0.83203125 0.98828125 0.98828125 0.98828125 0.98828125 0.7734375  0.31640625 0.0078125 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.0703125  0.66796875 0.85546875 0.98828125 0.98828125 0.98828125 0.98828125 0.76171875 0.3125     0.03515625 0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.21484375 0.671875   0.8828125  0.98828125 0.98828125 0.98828125 0.98828125 0.953125   0.51953125 0.04296875 0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.53125    0.98828125 0.98828125 0.98828125 0.828125   0.52734375 0.515625   0.0625 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.         0.         0. 0.         0.         0.         0.        ] 5 通过观察数据结构可知数据由 10000个样本组成其中每一个样本是由784(28*28)个像素组成的图像像素黑白用 0/1 进行表示对应的label目标变量的每个字符图像的真实标签。 由图可知MNIST数据由手写字符图像和标签组成。 通过对 MLP分类器的学习可见模型经过 20次迭代loss 不断减少0.2320587后达到拟合状态。 由输出结果可见通过 GridSearchCV 网格查到的最优参数为:隐藏层数为(10030)最大池化层为 20激活函数为sgd;且此时多层感知机神经网络MNIST手写字符识别的准确率达到了 0.9347。
http://www.tj-hxxt.cn/news/223766.html

相关文章:

  • 做网站需要雇什么人培训网站推荐
  • 安徽建网站公司网站开发文档管理工具
  • 自己如何做网站优化免费域名注册方式
  • 营销公司网站模板下载wordpress 标签云
  • 如何查看网站服务器系统域名拍卖网站
  • notepad做网站技巧微信公众平台小程序怎么制作
  • 网站视频插件代码微信公众号管理工具
  • 外贸西班牙语网站建设青岛做网站哪家好
  • 万江营销型网站建设设计制作的一般流程是明确问题
  • 浙江平安建设信息系统网站千阳做网站
  • 怎么制作网站步骤房管局网站做房查
  • 做运动特卖的网站织梦开发供需网站
  • 嘉兴 网站 建设珠海市企业网站制作平台
  • 厦门市建设质量安全协会网站长沙互联网企业
  • 北京的餐饮网站建设c 网站开发环境
  • 免费域名网站黄丁的老头seo博客
  • 做网站多钱长沙招聘
  • 合肥seo网站推广费用网站外链接自己可以怎么做
  • 免费发布信息不收费的网站网站建设预览
  • 佛山网站设计电话创建一个网站的创业计划书
  • 徐州市中宇建设工程有限公司网站量个网站一个域名
  • asp网站部署html5农业网站模板
  • 自适应网站开发seo国外网络推广
  • wordpress 仿站工具如何做网站推广方式
  • 百度建设网站建设民政局网站需要多少钱
  • 湖北网站制作公司的联系方式做网站的价格是多少
  • 做一个营销型网站有哪些内容宁波人流网
  • 惠州网页模板建站做伞的外国网站
  • 网站开发流程有几个阶段十堰网站设计公司
  • 企业品牌网站建设我们的优势青海城乡建设部网站