当前位置: 首页 > news >正文

南通网站建设机构网站优化排名易下拉软件

南通网站建设机构,网站优化排名易下拉软件,网页设计题材,牌匾设计效果图文章目录 引言一、二维随机变量及分布1.1 基本概念1.2 联合分布函数的性质 二、二维离散型随机变量及分布三、多维连续型随机变量及分布3.1 基本概念3.2 二维连续型随机变量的性质 写在最后 引言 隔了好长时间没看概率论了,上一篇文章还是 8.29 ,快一个…

文章目录

  • 引言
  • 一、二维随机变量及分布
    • 1.1 基本概念
    • 1.2 联合分布函数的性质
  • 二、二维离散型随机变量及分布
  • 三、多维连续型随机变量及分布
    • 3.1 基本概念
    • 3.2 二维连续型随机变量的性质
  • 写在最后


引言

隔了好长时间没看概率论了,上一篇文章还是 8.29 ,快一个月了。主要是想着高数做到多元微分和二重积分题目,再来看这个概率论二维的来,更好理解。不过没想到内容太多了,到现在也只到二元微分的进度。


一、二维随机变量及分布

1.1 基本概念

定义 1 —— 二维随机变量。设 X , Y X,Y X,Y 为定义于同一样本空间上的两个随机变量,称 ( X , Y ) (X,Y) (X,Y) 为二维随机变量。同理,也有 n n n 维随机变量的定义。

定义 2 —— 二维随机变量的分布函数。

(1)设 ( X , Y ) (X,Y) (X,Y) 为二维随机变量,对任意的 x , y ∈ R x,y\in R x,yR ,称 F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{X\leq x,Y\leq y\} F(x,y)=P{Xx,Yy} 为二维随机变量 ( X , Y ) (X,Y) (X,Y) 的联合分布函数。

(2)称函数 F X ( x ) = P { X ≤ x } , F Y ( y ) = P { Y ≤ y } F_X(x)=P\{X\leq x\},F_Y(y)=P\{Y\leq y\} FX(x)=P{Xx},FY(y)=P{Yy} 分别为随机变量 X , Y X,Y X,Y 的边缘分布函数。同理,有 n n n 维随机变量的联合分布函数以及边缘分布函数。

1.2 联合分布函数的性质

( X , Y ) (X,Y) (X,Y) 为二维随机变量, F ( x , y ) F(x,y) F(x,y) 为其联合分布函数,有如下性质:

(1) 0 ≤ F ( x , y ) ≤ 1 ; 0 \leq F(x,y) \leq 1; 0F(x,y)1;

(2) F ( x , y ) F(x,y) F(x,y) x , y x,y x,y 都是单调不减函数;

(3) F ( x ) F(x) F(x) 关于 x , y x,y x,y 都是右连续;

(4) F ( − ∞ , − ∞ ) = 0 = F ( − ∞ , + ∞ ) = F ( + ∞ , − ∞ ) = 0 , F ( + ∞ , + ∞ ) = 1. F(-\infty,-\infty)=0=F(-\infty,+\infty)=F(+\infty,-\infty)=0,F(+\infty,+\infty)=1. F(,)=0=F(,+)=F(+,)=0,F(+,+)=1.

其实和一维随机变量的分布函数的性质大差不差的,我也是从一维那里复制过来改了下的hhh。

以下是一些推论:

(1)设 { X ≤ x } = A , { Y ≤ y } = B \{X\leq x\}=A,\{Y\leq y\}=B {Xx}=A,{Yy}=B ,则 F ( x , y ) = P ( A B ) , F X ( x ) = P ( A ) , F Y ( y ) = P ( B ) . F(x,y)=P(AB),F_X(x)=P(A),F_Y(y)=P(B). F(x,y)=P(AB),FX(x)=P(A),FY(y)=P(B). 即联合分布函数是要取交集。

(2) F X ( x ) = F ( x , + ∞ ) , F Y ( y ) = F ( + ∞ , y ) . F_X(x)=F(x,+\infty),F_Y(y)=F(+\infty,y). FX(x)=F(x,+),FY(y)=F(+,y). 即当一个变量限制在小于正无穷范围(这是肯定的),当然此时联合分布函数和边缘分布函数一致了。

(3)设 a 1 < a 2 , b 1 < b 2 a_1<a_2,b_1<b_2 a1<a2,b1<b2 ,则

P { a 1 < X ≤ a 2 , b 1 < Y ≤ b 2 } = P { a 1 < X ≤ a 2 , Y ≤ b 2 } − P { a 1 < X ≤ a 2 , Y ≤ b 1 } = ( P { X ≤ a 2 , Y ≤ b 2 } − P { X ≤ a 1 , Y ≤ b 2 } ) − ( P { X ≤ a 2 , Y ≤ b 1 } − P { X ≤ a 1 , Y ≤ b 1 } ) = F ( a 2 , b 2 ) − F ( a 1 , b 2 ) − F ( a 2 , b 1 ) + F ( a 1 , b 1 ) . P\{a_1 < X\leq a_2,b_1 < Y \leq b_2\}=P\{a_1 < X\leq a_2,Y\leq b_2\}-P\{a_1 < X\leq a_2,Y \leq b_1\}=(P\{X \leq a_2,Y\leq b_2\}-P\{X \leq a_1,Y\leq b_2\})-(P\{X \leq a_2,Y\leq b_1\}-P\{X\leq a_1,Y\leq b_1\})=\pmb{F(a_2,b_2)-F(a_1,b_2)-F(a_2,b_1)+F(a_1,b_1)}. P{a1<Xa2,b1<Yb2}=P{a1<Xa2,Yb2}P{a1<Xa2,Yb1}=(P{Xa2,Yb2}P{Xa1,Yb2})(P{Xa2,Yb1}P{Xa1,Yb1})=F(a2,b2)F(a1,b2)F(a2,b1)+F(a1,b1).


二、二维离散型随机变量及分布

( X , Y ) (X,Y) (X,Y) 为二维随机变量,若 ( X , Y ) (X,Y) (X,Y) 的可能取值为有限对或可列对,称 ( X , Y ) (X,Y) (X,Y) 为二维离散型随机变量。

设随机变量 ( X , Y ) (X,Y) (X,Y) 的可能取值为 ( x i , y j ) ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) (x_i,y_j)(i=1,2,\cdots,m;j=1,2,\cdots,n) (xi,yj)(i=1,2,,m;j=1,2,,n) ,称 P { X ≤ x i , Y ≤ y j } = p i j ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) , 或 P\{X\leq x_i,Y\leq y_j\}=p_{ij}(i=1,2,\cdots,m;j=1,2,\cdots,n),或 P{Xxi,Yyj}=pij(i=1,2,,m;j=1,2,,n),
在这里插入图片描述

( X , Y ) (X,Y) (X,Y) 的联合分布律。其具有如下性质:

  1. p i j ≥ 0 ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) ; p_{ij}\geq 0(i=1,2,\cdots,m;j=1,2,\cdots,n); pij0(i=1,2,,m;j=1,2,,n);
  2. ∑ ∑ p i j = 1. \sum\sum p_{ij}=1. ∑∑pij=1.

由全概率公式,有 P { X = x i } = P { X = x i , y 1 } + ⋯ + P { X = x i , y n } = p i 1 + ⋯ + p i , n = p i ( i = 1 , 2 , ⋯ , m ) . P\{X=x_i\}=P\{X=x_i,y_1\}+\cdots+P\{X=x_i,y_n\}=p_{i1}+\cdots+p_{i,n}=p_i(i=1,2,\cdots,m). P{X=xi}=P{X=xi,y1}++P{X=xi,yn}=pi1++pi,n=pi(i=1,2,,m). 同理,可以得到 P { Y = y i } P\{Y= y_i\} P{Y=yi} 。于是,联合分布律每一行每一列之和,即可构成两个随机变量的边缘分布律。

在这里插入图片描述

一般情况下,联合分布律和边缘分布律可以放在一张表格中:

在这里插入图片描述

三、多维连续型随机变量及分布

3.1 基本概念

( X , Y ) (X,Y) (X,Y) 为二维随机变量,其分布函数为 F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{X\leq x,Y\leq y\} F(x,y)=P{Xx,Yy} ,若存在非负可积函数 f ( x , y ) f(x,y) f(x,y) ,使得 F ( x , y ) = ∫ − ∞ x d u ∫ − ∞ y f ( u , v ) d v F(x,y)=\int_{-\infty}^xdu\int_{-\infty}^yf(u,v)dv F(x,y)=xduyf(u,v)dv ,称 ( X , Y ) (X,Y) (X,Y) 为二维连续型随机变量, f ( x , y ) f(x,y) f(x,y) ( X , Y ) (X,Y) (X,Y) 的联合密度函数, F ( x , y ) F(x,y) F(x,y) 为联合分布函数。

f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y , f Y ( y ) = ∫ − ∞ ∞ f ( x , y ) d x f_X(x)=\int_{-\infty}^\infty f(x,y)dy,f_Y(y)=\int_{-\infty}^\infty f(x,y)dx fX(x)=f(x,y)dy,fY(y)=f(x,y)dx 分别为随机变量 X , Y X,Y X,Y 的边缘密度函数。

F X ( x ) = ∫ − ∞ x f X ( x ) d x , F Y ( y ) = ∫ − ∞ y f Y ( y ) d y F_X(x)=\int_{-\infty}^xf_X(x)dx,F_Y(y)=\int_{-\infty}^yf_Y(y)dy FX(x)=xfX(x)dx,FY(y)=yfY(y)dy 分别为随机变量 X , Y X,Y X,Y 的边缘分布函数。

同理,以上结论可推广到 n n n 维。

3.2 二维连续型随机变量的性质

f ( x , y ) f(x,y) f(x,y) 为二维随机变量 ( X , Y ) (X,Y) (X,Y) 的联合密度函数,则

  1. f ( x , y ) ≥ 0 ; f(x,y)\geq 0; f(x,y)0;
  2. ∫ − ∞ ∞ d x ∫ − ∞ ∞ f ( x , y ) d y = 1. \int_{-\infty}^\infty dx\int_{-\infty}^\infty f(x,y)dy=1. dxf(x,y)dy=1.

( X , Y ) (X,Y) (X,Y) 为二维连续型随机变量, f ( x , y ) f(x,y) f(x,y) 为其联合密度函数, F ( x , y ) F(x,y) F(x,y) 为其联合分布函数。若 F ( x , y ) F(x,y) F(x,y) 在某点 ( x , y ) (x,y) (x,y) 处二阶可偏导,有 f ( x , y ) = ∂ F ∂ x ∂ y ; f(x,y)=\frac{\partial F}{\partial x \partial y}; f(x,y)=xyF; 若在某点处二阶不可偏导,则 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0

二阶联合分布函数一定连续,但不一定二阶可偏导。


写在最后

果然,先去看看多元微分和多重积分,看这个就较为轻松。

http://www.tj-hxxt.cn/news/20832.html

相关文章:

  • protenus代做网站互联网营销师培训学校
  • 网站建站的技术解决方案一个新手怎么做推广
  • 韩国网站设计欣赏爱站网关键词挖掘工具站长工具
  • 网站空间空间互联网营销师培训课程免费
  • 福州金山网站建设少儿编程培训机构排名前十
  • 郑州seo网站推广小程序设计
  • 网站制作需要哪些东西关键词优化哪家好
  • 那个网站做任务赚钱整合营销传播方法包括
  • 微网站和h5有什么区别营销推广是什么意思
  • 用QQ群做网站排名800元做小程序网站
  • 网站的图片怎么做显示和隐藏营销咨询顾问
  • 网站开发项目建设经验企业网站推广的形式有哪些
  • 引物在线设计网站成人教育培训机构
  • 网站开发怎样实现上传视频教程平台营销策略都有哪些
  • 网站咋开通南京百度推广
  • 建设外贸网站公司国际免费b站
  • h5响应式网站制作郑州做网站的专业公司
  • 网站视频主持app拉新推广平台渠道商
  • 工商注册公司的流程优化问题
  • 政府网站方案书百度指数app下载
  • 江西建设推广网站网站推广的常用途径有哪些
  • 网站建设新闻发布注意嵌入式培训机构哪家好
  • 如何卸载wordpressseo学徒
  • 舟山建设银行纪念币预约网站快速建站哪个平台好
  • 企业做推广可以发哪些网站建设网站费用
  • 北京国都建设集团网站关键词抓取工具都有哪些
  • 网站优化可以做哪些优化网店推广渠道有哪些
  • 江苏省交通厅门户网站建设管理办法淘宝seo优化是什么
  • 建站公司联系电话一个网站的seo优化有哪些
  • 宽屏蓝色企业网站源码世界杯最新排名