当前位置: 首页 > news >正文

宁夏网站建设品牌公司服装市场调网站建设的目的

宁夏网站建设品牌公司,服装市场调网站建设的目的,楼盘网,目前做哪些网站能致富深度学习模型的训练涉及几个方面 1、模型结构#xff1a;模型有几层、每层多少通道数等 2、数据#xff1a;数据集划分、数据文件路径、批大小、数据增强策略等 3、训练优化 #xff1a;梯度下降算法、学习率参数、训练总轮次、学习率变化策略等 4、运行时#xff1a;GPU、…深度学习模型的训练涉及几个方面 1、模型结构模型有几层、每层多少通道数等 2、数据数据集划分、数据文件路径、批大小、数据增强策略等 3、训练优化 梯度下降算法、学习率参数、训练总轮次、学习率变化策略等 4、运行时GPU、分布式环境配置等 5、辅助功能如打印日志、定时保存 checkpoint等 mmpretrain的文件结构 -configs 配置文件 -data 数据集存储路径 -demo 入门案例 -docs 中英文文档教程 -mmpretrain 模块化代码-apis: 顶层 api 接口支持各类推理任务-datasets:支持了各类数据集数据变换等-engine:支持各类钩子优化器等训练相关组件-evaluation:各类评测相关函数和指标计算-models:各类算法模型的定义-backbones 一般为图像的特征提取器各类主千网络的定义-necks 则为承接 backbone 和 head 之间的其它计算 (例如高维特征解码多尺度特征融合等)-heads 则主要为相关loss 计算和推理结果的预测-classifierselfsupmultimodal 则为模型高阶抽象定义-structures: DataSample 数据结构的定义-utils: 相关工具-visualization:可视化的支持 -project 工程实例 -resources 图片、视频等静态资源 -tests 组件维度测试脚本 -tools 训练、测试、可视化等工具集 -work_dirs 运行代码产生的文件存放地现有数据集现有模型 python tools/train.py configs/resnet/resnet18_8xb16_cifar10.py python tools/test.py configs/resnet/resnet18_8xb16_cifar10.py work_dirs/resnet18_8xb16_cifar10/epoch_200.pth自定义模型现有数据集 方案一 1、使用pytorch实现完整的前向传播并测试好维度 2、按照mmpretrain的约定将进行代码转换以及配置文件的改写 python tools/train.py work_dirs/test_8xb16_cifar10/resnet18_8xb16_cifar10.py python tools/test.py work_dirs/test_8xb16_cifar10/resnet18_8xb16_cifar10.py work_dirs/resnet18_8xb16_cifar10/epoch_20.pth方案二 1、通过断点调试以及可视化的方式理解官方代码维度的变换 2、在理解的基础上直接按照约定改写官方代码 自定义模型心得 1、虽然模型被拆分成了不同分组件但组件之间并不能任意组合 2、各个组件的输出并不一定是Tensor,也有可能是Tuple 3、并不是每个组件都是必须的例如可以没有neck 4、loss是和head绑定的拆散模型时候要注意 自定义数据集现有模型 1、数据集下载 Fruits Dataset(Images) https://www.kaggle.com/datasets/shreyapmaher/fruits-dataset-imagespython tools/train.py configs/efficientnet/efficientnet-b0_8xb32_in1k.py出现报错但是没有影响只是需要拿到efficientnet-b0_8xb32_in1k.py,随后修改这个配置 修改 1type‘ImageNet’–》type‘CustomDataset’ 4个地方 cp efficientnet-b0_8xb32_in1k.py efficientnet-b0_8xb32_fruits.py2efficientnet-b0_8xb32_in1k.py–》efficientnet-b0_8xb32_fruits.py 3work_dir ‘./work_dirs\efficientnet-b0_8xb32_in1k’–》work_dir ‘./work_dirs/efficientnet-b0_8xb32_fruits’ 4数据集路径 data_root‘data/imagenet’–》data_root‘data/Fruits Dataset/images’ 5num_classes1000–》num_classes9 6split‘train’、splitval’注释掉 7适当的修改num_workers、epochs、batch_size、lr等 如下 python tools/train.py work_dirs/efficientnet-b0_8xb32_fruits.py --work-dir work_dirs/efficientnet-b0_8xb32_fruits python tools/test.py work_dirs/efficientnet-b0_8xb32_fruits.py work_dirs/efficientnet-b0_8xb32_fruits/epoch_50.pthresnet18_8xb32_in1k.py 名称resnet 层数18 8×b16:8张卡每张卡batch_size为16 in1k数据集名称 python tools/train.py configs/resnet/resnet18_8xb32_in1k.pymy_resnet18_8xb32_in1k.py 完整的配置文件 2、训练结果测试与验证 单张测试 python demo/image_demo.py demo/test.jpg configs/resnet/my_resnet18_8xb32_in1k_method3.py --checkpoint D:/Project_python/mmpretrain/work_dirs/my_resnet18_8xb32_in1k_method3/epoch_50.pth --show --show-dir demo --device cuda:0批量测试 1测试 测试可以看详细文档教程自定义评估指标 val_evaluator [dict(topk(1, 5,), typeAccuracy),dict(typeSingleLabelMetric, items[precision, recall]),]python tools/test.py configs/resnet/my_resnet18_8xb32_in1k_method3.py work_dirs/my_resnet18_8xb32_in1k_method3/epoch_50.pth --work-dir work_dirs/my_resnet18_8xb32_in1k_method3/val --out-item metrics --show-dir work_dirs/my_resnet18_8xb32_in1k_method3/val_result 2可视化模块展示 tools/visualization browse_dataset.py 显示在进入模型之前类似数据增强操作经历了什么 python tools/visualization/browse_dataset.py configs/resnet/my_resnet18_8xb32_in1k_method3.py --output-dir work_dirs/my_resnet18_8xb32_in1k_method3/browse_dataset --phase train --show-number 2 --mode original transformed concat pipelinevis_cam.py热力图 主要关注区域 python tools/visualization/vis_cam.py demo/roses.jpg configs/resnet/my_resnet18_8xb32_in1k_method3.py work_dirs/my_resnet18_8xb32_in1k_method3/epoch_50.pth --preview-modeldata_preprocessor backbone ....... backbone.layer4 backbone.layer4.0 backbone.layer4.0.conv1 ....... backbone.layer4.1 backbone.layer4.1.conv1 backbone.layer4.1.bn1 backbone.layer4.1.conv2 backbone.layer4.1.bn2 backbone.layer4.1.relu backbone.layer4.1.drop_path neck ....... head.fcpython tools/visualization/vis_cam.py demo/roses.jpg configs/resnet/my_resnet18_8xb32_in1k_method3.py work_dirs/my_resnet18_8xb32_in1k_method3/epoch_50.pth --target-category 2 --target-layers backbone.layer4.1.conv2 --method GradCAM/GradCAM/......3分析工具 tools/analysis_tools 计算参数量 python tools/analysis_tools/get_flops.py configs/resnet/my_resnet18_8xb32_in1k_method3.py --shape 224 224日志分析 python tools/analysis_tools/analyze_logs.py plot_curve work_dirs/my_resnet18_8xb32_in1k_method3/20230929_151247/vis_data/20230929_151247.json --keys loss accuracy/top1python tools/analysis_tools/analyze_logs.py cal_train_time work_dirs/my_resnet18_8xb32_in1k_method3/20230929_151247/vis_data/20230929_151247.json生成pkl文件 python tools/test.py configs/resnet/my_resnet18_8xb32_in1k_method3.py work_dirs/my_resnet18_8xb32_in1k_method3/epoch_50.pth --out work_dirs/my_resnet18_8xb32_in1k_method3/result.pkl验证预测失败和成功的图 python tools/analysis_tools/analyze_results.py configs/resnet/my_resnet18_8xb32_in1k_method3.py work_dirs/my_resnet18_8xb32_in1k_method3/result.pkl --out-dir work_dirs/my_resnet18_8xb32_in1k_method3/analyze 画混淆矩阵图 python tools/analysis_tools/confusion_matrix.py configs/resnet/my_resnet18_8xb32_in1k_method3.py work_dirs/my_resnet18_8xb32_in1k_method3/result.pkl --show --include-values
http://www.tj-hxxt.cn/news/141283.html

相关文章:

  • 怀化二手车网站特效网站模板
  • 做视频网站的备案要求吗石家庄信息门户网站定制费用
  • 张家港高端网站制作广州网站建设公司推荐乐云seo
  • 金华网站制作策划wordpress 物流插件
  • 设计logo网站免费奇米行业 专业 网站建设
  • 帮网站做关键词排名优化网站建设常见故障
  • 网站建设人员组织服装工厂做网站的好处
  • 有关网站开发的参考文献秦皇岛在哪
  • 网站优化前景重庆营销型网站建设多少钱
  • 怎么自己给自己的网站做推广北京网站建设定制
  • 苏州h5网站建设价格page 编辑 wordpress
  • 推广优化网站排名高新公司网站建设哪家好
  • 用什么建设网站洋气的传媒公司名字
  • 上海网站建设-中国互联长沙市有限公司
  • 与电子商务网站建设有关实训报告系统优化助手
  • 国外有没有网站是做潘多拉的市场调研报告万能模板
  • 国外网站搭建平台京网站建设
  • 巴中市建设局网站博客网站登录入口
  • 优秀网站网页设计v9做的网站被攻击链接吧跳转
  • 山东专业的网站建设wordpress手机自动跳转二级
  • 网站备案名称填写规则工业企业网络推广
  • 潍坊作风建设网站asp网站源码
  • 旅游网站设计完整代码好的企业管理网站
  • 网站建设的公司前景大型网站开发 书籍
  • 购物网站建设网页推广php网站开发前景
  • 建设集团网站报告书阿里巴巴网站分类板块做全屏
  • 网站开发职业工资如何开发app软件平台
  • 建设网站投标标书范本手机如何制作app
  • 怎么样做手机网站做零售网站
  • 建站网址导航hao123连山网站建设