学校网站建设报价单,2018做分享网站,常州网站制作公司,深圳网站优化怎么做各位CSDN的uu们你们好呀#xff0c;今天小雅兰进入一个全新的内容的学习#xff0c;就是算法和数据结构啦#xff0c;话不多说#xff0c;让我们进入数据结构的世界吧 什么是数据结构#xff1f;
什么是算法#xff1f;
数据结构和算法的重要性
如何学好数据结构和算… 各位CSDN的uu们你们好呀今天小雅兰进入一个全新的内容的学习就是算法和数据结构啦话不多说让我们进入数据结构的世界吧 什么是数据结构
什么是算法
数据结构和算法的重要性
如何学好数据结构和算法
算法的时间复杂度和空间复杂度
算法效率
时间复杂度
空间复杂度
常见复杂度对比
复杂度的oj练习 什么是数据结构 数据结构(Data Structure)是计算机存储、组织数据的方式指相互之间存在一种或多种特定关系的 数据元素的集合。 实现一些项目需要在内存中将数据存储起来比如实现一个通讯录把每个人的信息存储起来可以使用数组的方式也可以使用链表当然也可以使用树 什么是算法 算法(Algorithm):就是定义良好的计算过程他取一个或一组的值为输入并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤用来将输入数据转化成输出结果。 排序、查找、去重 数据结构和算法的重要性 怎么计算一个类到底实例化了多少对象如果还有一个派生类继承了这个类那么如何计算这两个类各自实例化了多少对象你了解联合体和结构体吗如何测试一个机器是大端还是小端你了解队列和栈吗怎么用两个栈实现一个队列。你使用过模版吗写一个比较两个数大小的模板函数。你使用过容器吗判断两个链表是否相交。Vector和数组的区别。你在学校里做的最满意的一个项目是什么简述一下这个项目。自我介绍学习STL具体是怎么开展的如果一款产品给你怎么检测内存泄露进程间通信方式共享内存是怎么实现的会出现什么问题怎么解决TCP为什么是可靠的可靠是怎么保证的为什么要三次握手为什么三次握手就可以可靠Http数据分包问题Vector相关Hashmap相关红黑树的原理、时间复杂度等Memcpy和memmove的区别客户端给服务器发送数据意图发送aaa然后再发bbb但是可能会出现aaabbb这种情 况如何处理游戏的邮件服务器中每天会有玩家频繁的创建邮件和删除邮件海量数据、大小不一会有 哪些场景怎么存储邮件是怎么到内存的写一道算法题手写五道题三道编程题一道数据库一道linux数据库的题两问算法了解的如何插入排序编程说一下IP,TCP,ARP内核是什么IP层主要功能map和set底层bootstrap的用法,html,html的全称你觉得框架和库有啥区别代码优化哈希表shell脚本快速排序思想递归是什么分治是什么与递归区别是什么web平台是怎么做的linux命令了解些什么前沿的技术英语怎么样了解过什么英语的文献可见数据结构与算法确实是非常重要的 如何学好数据结构和算法
死磕代码磕成这样就可以了哈哈哈 注意画图和思考 算法效率
算法的复杂度 算法在编写成可执行程序后运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏一般是从时间和空间两个维度来衡量的即时间复杂度和空间复杂度。 时间复杂度主要衡量一个算法的运行快慢而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。 时间复杂度
时间复杂度的概念 时间复杂度的定义在计算机科学中算法的时间复杂度是一个函数它定量描述了该算法的运行时间。一 个算法执行所耗费的时间从理论上说是不能算出来的只有你把你的程序放在机器上跑起来才能知道。但是我们需要每个算法都上机测试吗是可以都上机测试但是这很麻烦所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例算法中的基本操作的执行次数为算法的时间复杂度。 此函数表示数学里面带有未知数的函数表达式和C语言的函数不一样 即找到某条基本语句与问题规模N之间的数学表达式就是算出了该算法的时间复杂度。 下面我们来看一个具体的例子
// 请计算一下Func1中count语句总共执行了多少次
void Func1(int N)
{int count 0;for (int i 0; i N; i){for (int j 0; j N; j){count;}}for (int k 0; k 2 * N; k){count;}int M 10;while (M--){count;}printf(%d\n, count);} Func1 执行的基本操作次数 N 10 F(N) 130N 100 F(N) 10210N 1000 F(N) 1002010 N越大后两项对结果的影响是越小的 实际中我们计算时间复杂度时我们其实并不一定要计算精确的执行次数而只需要大概执行次数那么这 里我们使用大O的渐进表示法。 大O的渐进表示法
大O符号Big O notation是用于描述函数渐进行为的数学符号。
推导大O阶方法 用常数1取代运行时间中的所有加法常数。在修改后的运行次数函数中只保留最高阶项。如果最高阶项存在且不是1则去除与这个项目相乘的常数。得到的结果就是大O阶。下面还是来先看看题目吧
// 计算Func2的时间复杂度
void Func2(int N)
{int count 0;for (int k 0; k 2 * N; k){count;}int M 10;while (M--){count;}printf(%d\n, count);
} 基本操作执行了2N10次通过推导大O阶方法知道时间复杂度为 O(N) // 计算Func3的时间复杂度
void Func3(int N, int M)
{int count 0;for (int k 0; k M; k){count;}for (int k 0; k N; k){count;}printf(%d\n, count);
} 基本操作执行了MN次有两个未知数M和N时间复杂度为 O(NM) 一般情况下时间复杂度计算时都是用的N但是其他的比如M、K也是可以的 如果题目有条件 M远大于N那么可以认为是O(M)N远大于M那么可以认为是O(N)M和N差不多大那么可以认为是O(M)也可以认为是O(N) // 计算Func4的时间复杂度
void Func4(int N)
{int count 0;for (int k 0; k 100; k){count;}printf(%d\n, count);
}基本操作执行了100次通过推导大O阶方法时间复杂度为 O(1) O(1)不是代表算法运行一次是常数次 // 计算strchr的时间复杂度
const char* strchr(const char* str, int character);有些算法的时间复杂度存在最好、平均和最坏情况 最坏情况任意输入规模的最大运行次数(上界)平均情况任意输入规模的期望运行次数最好情况任意输入规模的最小运行次数(下界)例如在一个长度为N数组中搜索一个数据x 最好情况1次找到最坏情况N次找到平均情况N/2次找到在实际中一般情况关注的是算法的最坏运行情况所以数组中搜索数据时间复杂度为O(N) 所以 基本操作执行最好1次最坏N次时间复杂度一般看最坏时间复杂度为 O(N) // 计算BubbleSort的时间复杂度
void BubbleSort(int* a, int n)
{assert(a);for (size_t end n; end 0; --end){int exchange 0;for (size_t i 1; i end; i){if (a[i - 1] a[i]){Swap(a[i - 1], a[i]);exchange 1;}}if (exchange 0)break;}
}基本操作执行最好N次最坏执行了(N*(N1)/2)次通过推导大O阶方法时间复杂度一般看最坏时间复杂度为 O(N^2) 算时间复杂度不能只去看是几层循环而是要看它的思想 // 计算BinarySearch的时间复杂度
int BinarySearch(int* a, int n, int x)
{assert(a);int begin 0;int end n - 1;// [begin, end]begin和end是左闭右闭区间因此有号while (begin end){int mid begin ((end - begin) 1);if (a[mid] x){begin mid 1;}else if (a[mid] x){end mid - 1;}else{return mid;}}return -1;
} 基本操作执行最好1次最坏O(logN)次时间复杂度为 O(logN) logN在算法分析中表示是底数为2对数为N。有些地方会写成lgN。 // 计算阶乘递归Fac的时间复杂度
long long Fac(size_t N)
{if (0 N)return 1;return Fac(N - 1) * N;
} 递归算法递归次数*每次递归调用的次数 递归次数为O(1),每次递归调用的次数为O(N) 通过计算分析发现基本操作递归了N次时间复杂度为O(N)。 // 计算斐波那契递归Fib的时间复杂度
long long Fib(size_t N)
{if (N 3)return 1;return Fib(N - 1) Fib(N - 2);
} 通过计算分析发现基本操作递归了2^N次时间复杂度为O(2^N)。 右边一些递归分支会提前结束那么就会缺一些递归调用但是对总体来说影响不大 每次递归调用的次数是O(1) 斐波拉契数列的递归写法完全就是一个实际上没用的算法因为太慢了 空间复杂度 空间复杂度也是一个数学表达式是对一个算法在运行过程中临时额外占用存储空间大小的量度。 空间复杂度不是程序占用了多少bytes的空间因为这个也没太大意义所以空间复杂度算的是变量的个数。 空间复杂度计算规则基本跟实践复杂度类似也使用大O渐进表示法。 注意函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。 下面还是来看看题目
// 计算BubbleSort的空间复杂度
void BubbleSort(int* a, int n)
{assert(a);for (size_t end n; end 0; --end){int exchange 0;for (size_t i 1; i end; i){if (a[i - 1] a[i]){Swap(a[i - 1], a[i]);exchange 1;}}if (exchange 0)break;}
}使用了常数个额外空间所以空间复杂度为 O(1) // 计算Fibonacci的空间复杂度// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if (n 0)return NULL;long long* fibArray (long long*)malloc((n 1) * sizeof(long long));fibArray[0] 0;fibArray[1] 1;for (int i 2; i n; i){fibArray[i] fibArray[i - 1] fibArray[i - 2];}return fibArray;
} 动态开辟了N个空间空间复杂度为 O(N) 时间复杂度O(N) // 计算阶乘递归Fac的空间复杂度
long long Fac(size_t N)
{if (N 0)return 1;return Fac(N - 1) * N;
}递归调用了N次开辟了N个栈帧每个栈帧使用了常数个空间。空间复杂度为O(N) 空间是可以重复利用不累计的时间是一去不复返累计的 常见复杂度对比 复杂度的oj练习
力扣 int missingNumber(int* nums, int numsSize)
{int x 0;//跟[0,n]异或for (int i 0; i numsSize; i){x ^ i;}//再跟数组中值异或for (int i 0; i numsSize; i){x ^ nums[i];}return x;
} 好啦小雅兰今天的内容就到这里啦数据结构与算法确实是一个难啃的东西小雅兰加油呀