当前位置: 首页 > news >正文

南昌大型网站制作哈尔滨新闻头条今日新闻

南昌大型网站制作,哈尔滨新闻头条今日新闻,吉林电商网站建设价格,金华网站制作企业实际问题研究中,常常遇到多变量问题,变量越多,问题往往越复杂,且各个变量之间往往有联系。于是,我们想到能不能用较少的新变量代替原本较多的旧变量,且使这些较少的新变量尽可能多地保留原来变量所反映的信…

         实际问题研究中,常常遇到多变量问题,变量越多,问题往往越复杂,且各个变量之间往往有联系。于是,我们想到能不能用较少的新变量代替原本较多的旧变量,且使这些较少的新变量尽可能多地保留原来变量所反映的信息

比如说一件上衣,有身长、袖长、胸围、腰围等等十多个指标,将型号分这么多很麻烦,因此,厂家将十多项指标综合成3项指标,分别反映长度、胖瘦、特殊体型。

 变量具有相关性,同时就意味着反映的信息有重叠性,主成分分析就是将重复的变量(关系紧密的变量)删去,建立尽可能少的、互相无关的新变量。

设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析法,也是数学上用来降维的一种方法。 

通过PCA将n维原始特征映射到k维上(k<n),称这k维为主成分。

找新的维度实质上要使数据间的方差够大,即在新维度下坐标点足够分散、数据间有区分。本质上也就是在做基变换。

下图是一个例子,将5个点降维到一条直线上。

 代数上,可以理解为m × n的原始样本X,与n×k阶的矩阵W做矩阵乘法,得到m×k阶低维矩阵Y

分析思想

        假设有n个样板,p个指标,则可以构成大小为n×p的样本矩阵X:

x=\begin{bmatrix} x_{11} &x_{12} &... &x_{1p} \\ x_{21} &x_{22} & ...& x_{2p} \\ ... &... & ... & ...\\ x_{n1} &x_{n2} &... & x_{np} \end{bmatrix}=(x_1,x_2,...x_p)

假设我们想找到新的一组变量z_1,z_2,...,z_m(m\le p),其满足

\left\{\begin{matrix} z_1=l_{11}x_1+l_{12}x_2+...+l_{1p}x_p\\ z_2=l_{21}x_1+l_{22}x_2+...+l_{2p}x_p\\ ...\\ z_m=l_{m1}x_1+l_{m2}x_2+...+l_{mp}x_p \end{matrix}\right. 

系数l_{ij}确定原则:

  • z_iz_j(i\neq j;i,j=1,2,...,m) 线性无关
  • z_kx_1,x_2,...x_p线性组合中方差第k大者,称原变量指标的第k主成分

PCA计算步骤

  1. 标准化处理X_{ij}=\frac{x_{ij}-\overline{x_j}}{S_j}
  2. 计算标准化样本的协方差矩阵R=\begin{bmatrix} r_{11} &r_{12} &... &r_{1p} \\ r_{21} &r_{22} & ...& r_{2p} \\ ... &... & ... & ...\\ r_{n1} &r_{n2} &... & r_{np} \end{bmatrix}
  3. 计算R的特征值和特征向量(特征值从大到小排序)
  4. 计算主成分贡献率以及累计贡献率
  5. 贡献率\alpha_i=\frac{\lambda_i}{\sum_{k=1}^{p}\lambda_k}(i=1,2,...,p)
  6. 累计贡献率\sum G=\frac{\sum_{k-1}^{i}\lambda}{\sum_{k=1}^{p} \lambda_k }(i=1,2,...,p)
  7. 写出主成分:一般取累计贡献率超过80%的特征值所对应的第1,2,...,m个主成分。其中第 i 个是F_i=a_{1i}X_1+a_{2i}X_2+...+a_{pi}X_p(i=1,2,...,m) (a_i是第i个特征向量)
  8. 根据系数分析主成分代表的意义

 Python代码

         这段代码将Iris数据集降维到二维空间,并使用散点图展示不同类别的鸢尾花在降维后的空间中的分布情况。详见注释。

import matplotlib.pyplot as plt  # 加载matplotlib用于数据的可视化
from sklearn.decomposition import PCA  # 加载PCA算法包
from sklearn.datasets import load_iris  # 从sklearn库中导入load_iris函数,用于加载Iris数据集。data = load_iris()  # 使用load_iris函数加载Iris数据集。
y = data.target  # 提取数据集的标签(目标变量),表示不同种类的鸢尾花。
x = data.data  # 提取数据集的特征,表示鸢尾花的四个特征。
pca = PCA(n_components=2)  # 加载PCA算法,设置降维后主成分数目为2
reduced_x = pca.fit_transform(x)  # 对原始数据进行PCA降维,将数据转换为新的二维空间。
red_x, red_y = [], []
blue_x, blue_y = [], []
green_x, green_y = [], []
#  初始化三个颜色类别(红色、蓝色、绿色)的坐标列表。
for i in range(len(reduced_x)):  # 遍历降维后的数据if y[i] == 0:  # 如果数据点属于第一类鸢尾花。red_x.append(reduced_x[i][0])red_y.append(reduced_x[i][1])# 将该点在降维后的第一个主成分的坐标添加到红色类别的x坐标列表中。# 将该点在降维后的第二个主成分的坐标添加到红色类别的y坐标列表中。elif y[i] == 1:blue_x.append(reduced_x[i][0])blue_y.append(reduced_x[i][1])else:green_x.append(reduced_x[i][0])green_y.append(reduced_x[i][1])
# 可视化
plt.scatter(red_x, red_y, c='r', marker='x')
plt.scatter(blue_x, blue_y, c='b', marker='D')
plt.scatter(green_x, green_y, c='g', marker='.')
plt.show()

结果

http://www.tj-hxxt.cn/news/9933.html

相关文章:

  • 商务网站制作公司如何制作一个网站
  • 镇江建设局网站网站和网页的区别
  • 广州网站建设技术网站seo是啥
  • 贵阳网站上门备案业务广东清远今天疫情实时动态防控
  • 党的建设 网站企业如何进行网络推广
  • it服务公司信息如何优化上百度首页公司
  • 南京网站推广价格网络服务器地址怎么查
  • wordpress免费建站推广方式营销方案
  • 创建网站需要什么中国网站排名网
  • 网站设计为什么学不好推销产品怎么推广
  • php做的网站模板上海搜索优化推广哪家强
  • 怎样做seo网站链接旅游企业seo官网分析报告
  • 北京中高端网站建设公司seo工作内容有哪些
  • 做网站从哪里找货源网站统计器
  • 哈尔滨网站设计有哪些步骤宁波网站推广联系方式
  • 网站不备案可以登录吗成都私人网站建设
  • 网站全程设计技术中国新闻今日头条
  • 网站html动态效果代码竞价推广开户电话
  • 传媒类网站模板青岛网站建设公司排名
  • 娱乐网站开发潍坊seo计费
  • 做网站有用吗搜索引擎优化seo的英文全称是
  • 网站和微信订阅号优势seo教程免费
  • 大众服务器网站优化百度百科
  • 移动网站系统百度一直不收录网站
  • 2023年8月上海疫情爆发南昌关键词优化软件
  • 网站后台如何更改高端网站建设专业公司
  • 解析软件的网站关键词都有哪些
  • 手机网站公司北京网上推广
  • 郑州企业网站优化服务哪家好我赢网提供的高水平网页设计师
  • 党建网站建设自查报告营销型网站建设推广