当前位置: 首页 > news >正文

怎么做代购彩票网站吗百度app下载安装官方免费下载

怎么做代购彩票网站吗,百度app下载安装官方免费下载,上海网站建设天锐科技,北京海淀建筑行业培训中心目录 前言 一、评价类问题概述 二、AHP建模流程 1、过程描述 2、层次分析法—Matlab代码 三、权重计算 1、算术平均法 2、几何平均法 3、特征值法 目录 文章目录 前言 一、评价类问题概述 二、AHP建模流程 1、过程描述 2、层次分析法—Matlab代码 三、权重计算 算术平均法 前言…

目录

前言

一、评价类问题概述

二、AHP建模流程

1、过程描述

2、层次分析法—Matlab代码

三、权重计算

1、算术平均法

2、几何平均法

3、特征值法


目录

文章目录

前言

一、评价类问题概述

二、AHP建模流程

1、过程描述

2、层次分析法—Matlab代码

三、权重计算

算术平均法



前言

本文将讲解解决评价类问题的第一种模型层次分析法(AHP法),首先我们会具体讲解评价类问题解答的具体流程再对AHP方法进行讲解


一、评价类问题概述

评价指标本身的数学量化,评价指标之间的数学综合

基本流程明确主体—>指标明确—>权重计算—>方案评价

明确主体:明确哪里可以用到评价,比如:2012对《葡萄酒的评价》这里葡萄球的等级就是可以用到评价的地方

指标确定:可以通过一个思维导图的方式来画出这个指标系统。先确定方向(通过查找文献和头脑风暴),然后再向下细化

权重计算:使用主观权重法和客观权重法,每个指标都要进行归一化

方案评价:得到权重后,再对结果进行进一步分析

二、AHP建模流程

1、过程描述

1、建立层次结构模型:

目标层(决策的目标,如:选出微博之星)

准测层C={C1,C2,···,Cn}(考虑的因素,实质上就是评价指标

方案层P={P1,P2,···Pm}(决策对象,如:微博之星又A,B,C三个人可选择)

2、构造判断矩阵

对于准则层中的每个元素Ci(i=1,2,···,n),构造一个关于方案层P中各个元素两两比较的判断矩阵Ai(mxm),其中元素aij表示因素Pj相对于因素Pi的重要性程度。通常使用1-9的比例标度来表示这种重要性程度。易得aij*aji=1,所以在写判断矩阵时可以只写一边矩阵再对应填另一边

注意:这个地方常常会出现嵌套分层,也就是说可能每个Ci可能会单独对应某些Pi,这个时候要再构造一次判断矩阵,本质上就是先聚类(将单个指标因素按照关联度和相似度分为互不影响的几大类)再使用层次分析法

例如:下面我们将问题分成了三层,其中,我们将指标首先分为互不影响的三大类:通行能力,安全性,便捷度,首先对这三类构造判断矩阵,进行一致性检验,算出这三大类的权重;然后又讨论影响这三大类的因素,在每一大类中,对其中的影响因素再构造相应的判断矩阵,并且检验其一致性,再算出每个因素的权重,最后再计算出每个具体因素的总权重,进行评价分析。 

7756049e84c9445497adb85c7c5133be.png

efaa1fa5282d46e7916c3467562224ab.png

c7717e2fc8b04cea8ae4cc1cf1a0e241.png

3层次单排序及一致性检验

  • 对于每个判断矩阵Ai,计算其最大特征根λmax和对应的特征向量Wi对特征向量Wi进行归一化处理(其实就是特征向量/n
  • 得到准则层Ci下各因素的权重向量wi = (wi1, wi2, ..., wim)。
  • 计算一致性指标CI 和随机一致性指标RI(可在网上查到),进而计算一致性比例CR = CI / RI。
  • 551a5c0d2c0247d1b8c3e99688fecaf1.png
  • 如果CR < 0.1,(这里只有CI越小CR才能越小,故当λmax—>n时,我们认为矩阵Ai越接近一致矩阵) 则认为判断矩阵Ai具有满意的一致性
224b85bcee00430e93fd1b157fc0649f.png,CI通过上述公式求出,同时Xmax即为最大特征根,n为评价指标个数
整个过程可概括为下面的流程图
7c33b155db914c0f885a8bedd3d9e22f.png

2、层次分析法—Matlab代码

%层次分析法-一致性检验
A = input('判断矩阵A=');%输入判断矩阵
[n,n]=size(A); %获取A的行和列%求出最大特征值以及对应的特征向量
[V,D]=eig(A); %V是特征向量 D是特征值构成的对角矩阵
Max_eig = max(max(D)); %先求出每一行的最大值,再求出最大值中的最大值,即为最大特征值CI = (Max_eig - n)/(n-1);%求出一致性检验指标%网上查表可得
RI=[0,0.0001,0.52,0.89,1.12,1.26,1.36,1.41,1.46,1.49,1.52,1.54,1.56,1.58,1.59];%注意RI最多支持n=15
CR=CI/RI(n);
disp('一致性指标CI=');disp(CI);
disp('一致性比例CR=');disp(CR);if CR<0.1disp('因为CR<0.01,所以该判断矩阵A的一致性可以接受!');
elsedisp('注意:CR>=0.10,因此该判断举证A要进行修改!');
end

三、权重计算

1、算术平均法

%1.算术平均法计算权重
%输入样例,将前面的判断矩阵输入即可,此处省略
Asum=sum(A,1);%将A的每列求和赋值到Asum中
Ar = repmat(Asum,n,1);%复制Asum n行1列为Ar矩阵,使得Ar又变回了n行n列的矩阵
stand_A=A./Ar;%归一化处理,./表示对应的元素相除
ASumr = sum(stand_A,2);%再对归一化处理后的矩阵的每列加到同一行
disp(ASumr/n);%相加后的每个元素/n得到权重向量(nx1)

2、几何平均法

A = input('判断矩阵A='); %输入判断矩阵
[n,n] = size(A); %获取A的行和列
prod_A = prod(A,2); %将A中每一行元素相乘得到
一列向量
prod_n_A = prod_A.^(1/n); %将新的向量的每个分量开n
次方等价求1/n次方
re_prod_A = prod_n_A./sum(prod_n_A);%归一化处理
disp(re_prod_A); %展示权重结果

3、特征值法

A = input('判断矩阵A='); %输入判断矩阵
[n,n] = size(A); %获取A的行和列
%求出最大特征值以及对应的特征向量
[V,D] = eig(A); %V是特征向量 D是特征值构
成的对角矩阵
Max_eig = max(max(D)); %先求出每一列的最大值,
再求最大值中的最大值
[r,c] = find(Max_eig == D,1);%使用find()函数找出最大
特征值对应的特征向量的位置(索引)
%对特征向量进行归一化得到所需权重
disp(V(:,c)./sum(V(:,c)));

http://www.tj-hxxt.cn/news/95538.html

相关文章:

  • 南昌做网站哪家公司比较好市场营销策划公司排名
  • 怎么让自己的网站通过域名访问不了网站免费网站免费
  • 上海 网站建设 500强百度广告投诉电话
  • 如何做网站的教程杭州seo技术
  • 网站建设销售前景一级域名好还是二级域名好
  • 公关咨询广告投放优化师
  • 做好的网站怎么链接十大经典营销案例
  • 怎么做网站网页seo的优点和缺点
  • 做网站选什么专业成都seo优化排名公司
  • 做网站商机关键词查询工具哪个好
  • 江苏省建筑信息平台网络营销推广及优化方案
  • 聊城做网站的公司机构seo数据分析
  • 长沙制作网站设计多少钱百度网站收录查询
  • 梧州网站建设公司网站制作公司排名
  • 网站统计页面模板软件外包企业排名
  • 网站建设公司做前端泰安优化关键词排名哪家合适
  • 织梦系统网站模板修改域名访问网站怎么进入
  • 中国做网站最好的企业百度指数搜索热度排行
  • 如何做旅游网站推广成都自然排名优化
  • 公司网站建设前期情况说明宁波seo网络推广咨询价格
  • 网站建设 软件有哪些内容石家庄今日头条新闻
  • 律师网站建设方案品牌推广的渠道有哪些
  • 做网站开发团队兰州seo新站优化招商
  • 佛山免费网站制作江门网站建设模板
  • 网站登陆界面psd营销推广主要包括
  • 网站上名片如何做最让顾客心动的促销活动
  • 贵州有哪些公司做网站做得好哪家培训机构好
  • 织梦做信息类网站百度seo快速
  • 书店手机网站模板广州关键词搜索排名
  • wordpress模板网站怎样把个人介绍放到百度