当前位置: 首页 > news >正文

郴州网站seo汕头企业网络推广

郴州网站seo,汕头企业网络推广,深圳市网站建设有补贴吗,上海网站开发建设价格单源最短路径【学习算法】 前言版权推荐单源最短路径Java算法实现代码结果 带限制的单源最短路径1928. 规定时间内到达终点的最小花费LCP 35. 电动车游城市 最后 前言 2023-8-14 18:21:41 以下内容源自《【学习算法】》 仅供学习交流使用 版权 禁止其他平台发布时删除以下此…

单源最短路径【学习算法】

  • 前言
  • 版权
  • 推荐
  • 单源最短路径
  • Java算法实现
    • 代码
    • 结果
  • 带限制的单源最短路径
    • 1928. 规定时间内到达终点的最小花费
    • LCP 35. 电动车游城市
  • 最后

前言

2023-8-14 18:21:41

以下内容源自《【学习算法】》
仅供学习交流使用

版权

禁止其他平台发布时删除以下此话
本文首次发布于CSDN平台
作者是CSDN@日星月云
博客主页是https://blog.csdn.net/qq_51625007
禁止其他平台发布时删除以上此话

推荐

第七章 图【数据结构与算法】

单源最短路径

Java算法实现

代码

import java.util.*;/*** 在这个代码模板中,我们通过遍历int[] paths来构建图的邻接表。* 每个元素paths[i]表示从顶点paths[i][0]到顶点paths[i][1]的距离为paths[i][2]。** 我们使用一个ArrayList来表示图的邻接表,每个顶点都有一个对应的列表,其中存储了与该顶点相连的边的目标顶点及其权重。** 然后,我们可以使用Dijkstra算法来计算从给定起始顶点到其他顶点的最短距离。* 算法的时间复杂度为O((V+E)logV),其中V为顶点的数量,E为边的数量。** 这个代码模板使用了优先队列来实现最小堆,以提高算法的效率。算法的时间复杂度为O(ElogV),其中E为边的数量,V为顶点的数量。*/
public class Dijkstra {public static void main(String[] args) {//int[][] paths = {{0, 1, 2}, {0, 2, 4}, {1, 2, 1}, {1, 3, 4}, {1, 4, 2}, {2, 4, 3}, {3, 5, 2}, {4, 3, 3}, {4, 5, 2}};int n = 6;int[] dist = dijkstra(paths, n, 0);System.out.println(Arrays.toString(dist));int distD = dijkstraD(paths, n, 0,n-1);System.out.println(distD);}public static int[] dijkstra(int[][] paths, int n, int start) {//邻接表List<int[]>[] graph = new ArrayList[n];//初始化for (int i = 0; i < n; i++) {graph[i] = new ArrayList<>();}//初始化for (int[] path : paths) {int source = path[0];int destination = path[1];int weight = path[2];graph[source].add(new int[]{destination, weight});graph[destination].add(new int[]{source, weight});}//距离int[] dist = new int[n];Arrays.fill(dist, Integer.MAX_VALUE);dist[start] = 0;//优先队列PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> a[1] - b[1]);//表示到达顶点 最小距离pq.offer(new int[]{start, 0});while (!pq.isEmpty()) {//取出int[] curr = pq.poll();int vertex = curr[0];int distance = curr[1];//跳过if (distance > dist[vertex]) {continue;}//更新for (int[] edge : graph[vertex]) {int newDistance = distance + edge[1];if (newDistance < dist[edge[0]]) {dist[edge[0]] = newDistance;pq.offer(new int[]{edge[0], newDistance});}}}return dist;}public static int dijkstraD(int[][] paths,int n, int start,int end) {//邻接表List<int[]>[] graph = new ArrayList[n];//初始化for (int i = 0; i < n; i++) {graph[i] = new ArrayList<>();}//初始化for (int[] path : paths) {int source = path[0];int destination = path[1];int weight = path[2];graph[source].add(new int[]{destination, weight});graph[destination].add(new int[]{source, weight});}//距离int[] dist = new int[n];Arrays.fill(dist, Integer.MAX_VALUE);dist[start] = 0;//优先队列PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> a[1] - b[1]);//表示到达顶点 最小距离pq.offer(new int[]{start, 0});while (!pq.isEmpty()) {int[] curr = pq.poll();int vertex = curr[0];int distance = curr[1];if (distance > dist[vertex]) {continue;}if (vertex==end){return distance;}for (int[] edge : graph[vertex]) {int newDistance = distance + edge[1];if (newDistance < dist[edge[0]]) {dist[edge[0]] = newDistance;pq.offer(new int[]{edge[0], newDistance});}}}return dist[end];}
}

结果

[0, 2, 3, 6, 4, 6]
6

带限制的单源最短路径

1928. 规定时间内到达终点的最小花费

1928. 规定时间内到达终点的最小花费

class Solution {/*带限制的最短路径操作其实就是最短路径算法的变化版本,这里带限制的条件使得我们在向对应的队列加入元素的时候需要进行一定的判断,只有能够帮助我们的答案达到更优的操作才能够加入到队列当中,否则就会由于加入过多的元素导致最终超时。作者:豆小科链接:https://leetcode.cn/problems/minimum-cost-to-reach-destination-in-time/solutions/2224593/dai-xian-zhi-de-zui-duan-lu-jing-cao-zuo-d7t6/来源:力扣(LeetCode)著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。*/public static int minCost(int maxTime, int[][] edges, int[] passingFees) {// 使用最短路径进行处理int n = passingFees.length;//构造图邻接表List<List<int[]>> graph = new ArrayList<>();for (int i = 0; i < n; i++) graph.add(new ArrayList<>());for (int[] edge : edges) {int x = edge[0];int y = edge[1];int time = edge[2];graph.get(x).add(new int[]{y, time});graph.get(y).add(new int[]{x, time});}//优先队列PriorityQueue<int[]> queue = new PriorityQueue<>(Comparator.comparingInt(a -> a[1]));//时间 花费 当前结点queue.add(new int[]{0, passingFees[0], 0});//到达node的最少时间Map<Integer, Integer> timeMap = new HashMap<>();while (!queue.isEmpty()) {int[] poll = queue.poll();int time = poll[0];int ct = poll[1];int node = poll[2];//继续if (time > maxTime) continue;//结束if (node == n - 1) return ct;//更新if (!timeMap.containsKey(node) || timeMap.get(node) > time) {timeMap.put(node, time);for (int[] e : graph.get(node)) {queue.add(new int[]{e[1] + time, passingFees[e[0]] + ct, e[0]});}}}return -1;}
}

LCP 35. 电动车游城市

LCP 35. 电动车游城市

    /*** 首先建图, 存储每个城市相邻的城市和距离** 使用一个二维数组保存结果arr[i][j] = k, i = 所在城市, j = 剩余电量, k = 最短时间** 用队列来记录每个路径的信息 {time,cur,power}, time = 已用时间, cur = 所在城市, power = 剩余电量 (使用优先队列来保证每次优先执行已用时间最少的路径)** 每次只会有两种操作** 充一次电 - 新时间 = 已用时间 + 当前城市每单位充电需要时间, 新电量 = 剩余电量 + 1* 去往下一个城市 - 新时间 = 已用时间 + 去往该需要消耗的时间, 新电量 = 剩余电量 − 去往该城市需要消耗的电量** 作者:Feilulue 🍒* 链接:https://leetcode.cn/problems/DFPeFJ/solutions/974051/java-dijkstra-by-feilue-8p14/* 来源:力扣(LeetCode)* 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。*/
class Solution {public int electricCarPlan(int[][] paths, int cnt, int start, int end, int[] charge) {int n = charge.length;//构造了图List<int[]>[] map = new List[n];for(int i = 0; i < n; i++) map[i] = new ArrayList();for(int[] path : paths){map[path[0]].add(new int[]{path[1], path[2]});map[path[1]].add(new int[]{path[0], path[2]});}//使用一个二维数组保存结果arr[i][j] = k//i = 所在城市, j = 剩余电量, k = 最短时间int[][] res = new int[n][cnt+1];for(int[] i : res) Arrays.fill(i, Integer.MAX_VALUE/2);res[start][0] = 0;//用队列来记录每个路径的信息 {time,cur,power},//time = 已用时间, cur = 所在城市, power = 剩余电量//(使用优先队列来保证每次优先执行已用时间最少的路径)Queue<int[]> queue = new PriorityQueue<int[]>((x, y) -> (x[0] - y[0]));queue.offer(new int[]{0, start, 0});while(!queue.isEmpty()){//取出来int[] arr = queue.poll();int time = arr[0];int cur = arr[1];int power = arr[2];//继续if(time > res[cur][power]) continue;//结束if(cur == end) return time;//充一次电//新时间 = 已用时间 + 当前城市每单位充电需要时间, 新电量 = 剩余电量 + 1if(power < cnt){int t = time + charge[cur];if(t < res[cur][power+1]){res[cur][power+1] = t;queue.offer(new int[]{t, cur, power+1});}}//去往下一个城市//新时间 = 已用时间 + 去往该需要消耗的时间, 新电量 = 剩余电量 − 去往该城市需要消耗的电量for(int[] path : map[cur]){int next = path[0];int cost = path[1];int t = time + cost;int p = power - cost;if(p >= 0 && t < res[next][p]){res[next][p] = t;queue.offer(new int[]{t, next, p});}}}return -1;}
}

最后

我们都有光明的未来

祝大家考研上岸
祝大家工作顺利
祝大家得偿所愿
祝大家如愿以偿
点赞收藏关注哦

http://www.tj-hxxt.cn/news/95202.html

相关文章:

  • 怎样在各b2b网站做推广软文广告投放平台
  • 网站建设技术文案淘宝如何刷关键词增加权重
  • 酒店网站建设方案ppt昆明做网站的公司
  • 如何查看网站备案信息怎样制作一个网页
  • 邹城哪个公司做网站好长春网站seo
  • 做一款手机app大概多少钱百度seo排名优化提高流量
  • 网站建设便宜不可信杭州seo按天计费
  • 昆明做网站优化的公司附近电脑培训学校
  • 利用ps怎么做网站首页如何优化seo
  • 做网站要注意什么问题seo分析seo诊断
  • 赤坎手机网站建设上海百度seo
  • 做it题的网站友情链接工具
  • 学习做网站的网站百度卖货平台
  • wordpress获取文章第一张图片汕头自动seo
  • 1元建站竞价排名是什么意思
  • 福建建设部网站无锡百度竞价公司
  • 西安建站公司模板营销方案案例范文
  • 建站用wordpress好吗发稿媒体平台
  • 广州中风险地区廊坊首页霸屏优化
  • 怎样做网站底部导航seo系统培训班
  • 国外做的比较的ppt网站免费引流app下载
  • 资源交易网站代码全球热搜榜排名今日
  • 建设通网站是什么网站seo服务内容
  • 页面设计要会什么seo优化教程
  • 什么网站招聘外国人做兼职简单的seo
  • 单位网站等级保护必须做吗营销方案范文100例
  • 西安专业做网站公司烟台网站建设
  • 公众号菜单跳转网页怎么制作长春网站快速优化排名
  • 阜新建设工程信息网站人力资源和社会保障部
  • 网站外包公司该如何运营查询网站收录