当前位置: 首页 > news >正文

阿里巴巴网站中详情页怎么做百度广告价格

阿里巴巴网站中详情页怎么做,百度广告价格,最具口碑的企业网站建设,阿里邮箱 网站开发前面介绍 BFV 和 CKKS 加密方案,这两者更为常用。并且也解释了 Batch Encoder 和 级别的概念,这对接下来演示 BGV 会很有帮助。 一、BGV简介 BGV (Brakerski-Gentry-Vaikuntanathan) 方案 是一种基于环学习同态加密(RLWE)问题的加…

         前面介绍 BFV 和 CKKS 加密方案,这两者更为常用。并且也解释了 Batch Encoder 和 级别的概念,这对接下来演示 BGV 会很有帮助。

一、BGV简介

        BGV (Brakerski-Gentry-Vaikuntanathan) 方案 是一种基于环学习同态加密(RLWE)问题的加密方案。BGV 方案可以实现任意计算电路的同态加密,特别适合于加密数据的复杂运算。

特点

  • 同态运算:支持加法和乘法的任意组合,这意味着它可以评估任意计算电路。
  • 级联密文:密文可以通过一系列同态运算来处理,而不需要在每一步进行解密和重新加密。
  • 噪声管理:在每次同态运算之后,密文中的噪声会增加。BGV 方案采用了噪声管理技术(例如重新线性化和模数切换)来控制噪声增长,确保运算的正确性。

优点

  • 灵活性:支持任意复杂的计算。
  • 效率:通过噪声管理技术提高了运算效率。
  • 安全性:基于环学习同态加密问题的安全性高。

缺点

  • 复杂性:实现和使用BGV方案比一些其他方案更为复杂。
  • 资源消耗:噪声管理和重新线性化等操作增加了计算和存储的开销。

二、3种方案比较:

先看发展顺序

  • BGV 方案:2011年 Brakerski、Gentry 和 Vaikuntanathan 提出。
  • BFV 方案:2012年 Fan 和 Vercauteren 提出。
  • CKKS 方案:2017年 Cheon、Kim、Kim 和 Song 提出。

分别的适用场景:

  • 如果需要对整数进行精确计算,BFV 方案是一个好的选择。
  • 如果需要对浮点数进行近似计算,CKKS 方案是更合适的。
  • 如果需要复杂的计算电路,BGV 方案提供了最大的灵活性。

        每种方案都有其独特的优势和适用场景,在实际应用中,选择适合的方案可以最大化地发挥同态加密技术的优势。

三、BGV 示例

        在本示例中,计算8次多项式 x^8 ,并且在整数 1、2、3、4上的加密 x。多项式的系数可以看作是明文输入计算在 plain_modulus == 1032193 模数下进行。

        在BGV方案中对加密数据进行计算类似于BFV。这个例子的主要目的是解释BFV和BGV在密文系数模数选择和噪声控制方面的区别

3.1 参数设置和创建实例

这里先使用 BFVDefault 创建 coeff_modulus,后面会介绍如何更好的设置。

EncryptionParameters parms(scheme_type::bgv);
size_t poly_modulus_degree = 8192;
parms.set_poly_modulus_degree(poly_modulus_degree);
parms.set_coeff_modulus(CoeffModulus::BFVDefault(poly_modulus_degree));
parms.set_plain_modulus(PlainModulus::Batching(poly_modulus_degree, 20));
SEALContext context(parms);KeyGenerator keygen(context);
SecretKey secret_key = keygen.secret_key();
PublicKey public_key;
keygen.create_public_key(public_key);
RelinKeys relin_keys;
keygen.create_relin_keys(relin_keys);
Encryptor encryptor(context, public_key);
Evaluator evaluator(context);
Decryptor decryptor(context, secret_key);

        这里想再次强调一下,因为用的是 Batch 批处理,所以在设置 plain_modulus 的时候,要求是与 2倍 poly_modulus_degree 同余 1 的素数,这与普通的 Encoder 要求不同。上面代码中是用 PlainModulus::Batching 自动生成满足条件的随机数。
        这里输出设置的参数:

3.2 设置输入并编码

        批处理和槽操作在 BFV 和 BGV 中是相同的:

BatchEncoder batch_encoder(context);
size_t slot_count = batch_encoder.slot_count();
size_t row_size = slot_count / 2;

        这里特意设置 row_size 变量,是因为之前讲批处理的时候,强调过内部在逻辑上会编码成两行,故其实就是  \left [ 2, slotcount /2\right ] 。当然这个结构对于编码和计算是基本无感的,只有在考虑行旋转和列旋转的时候会有影响,这个下一篇会具体介绍(挖坑 + 1)。

vector<uint64_t> pod_matrix(slot_count, 0ULL);
pod_matrix[0] = 1ULL;
pod_matrix[1] = 2ULL;
pod_matrix[2] = 3ULL;
pod_matrix[3] = 4ULL;
Plaintext x_plain;
batch_encoder.encode(pod_matrix, x_plain);

这里对编码结果打印输出一下:


3.3 直接运算

Ciphertext x_encrypted;
cout << "Encrypt x_plain to x_encrypted." << endl;
encryptor.encrypt(x_plain, x_encrypted);
cout << "+ noise budget in freshly encrypted x: " << decryptor.invariant_noise_budget(x_encrypted) << " bits" << endl;

这里先对输入进行加密,并输出噪声预算:


先计算 x^2

Ciphertext x_squared;
evaluator.square(x_encrypted, x_squared);
cout << "+ size of x_squared: " << x_squared.size() << endl;
evaluator.relinearize_inplace(x_squared, relin_keys);
cout << "+ size of x_squared (after relinearization): " << x_squared.size() << endl;
cout << "+ noise budget in x_squared: " << decryptor.invariant_noise_budget(x_squared) << " bits" << endl;

        因为是 密文乘密文,为了减少乘法后的密文大小,这里进行了重新线性化,并输出了噪声预算,同时进行解密验证:

可以看出,运算中间结果是正确的,并且重新线性化后,密文大小从3减小到2。


再计算 x^4

Ciphertext x_4th;
evaluator.square(x_squared, x_4th);
cout << "+ size of x_4th: " << x_4th.size() << endl;
evaluator.relinearize_inplace(x_4th, relin_keys);
cout << "+ size of x_4th (after relinearization): " << x_4th.size() << endl;
cout << "+ noise budget in x_4th: " << decryptor.invariant_noise_budget(x_4th) << " bits" << endl;

同样进行了重新线性化,并输出目前噪声预算,同时进行解密验证:

可以看出这里的噪声预算下降的特别快,只剩 35 bits 了。


最后计算 x^8

Ciphertext x_8th;
evaluator.square(x_4th, x_8th);
cout << "+ size of x_8th: " << x_8th.size() << endl;
evaluator.relinearize_inplace(x_8th, relin_keys);
cout << "+ size of x_8th (after relinearization): " << x_8th.size() << endl;
cout << "+ noise budget in x_8th: " << decryptor.invariant_noise_budget(x_8th) << " bits" << endl;

        噪声预算已经达到0,这意味着解密无法得到正确的结果。故此,引出 BGV需要模数切换以减少噪声增长!


3.4 加入模数切换的运算

下面演示在每次重新线性化后插入模数切换:(避免啰嗦,这里直接完整计算)

cout << "+ noise budget in x_squared (previously): " << decryptor.invariant_noise_budget(x_squared) << " bits" << endl;
evaluator.square(x_encrypted, x_squared);
evaluator.relinearize_inplace(x_squared, relin_keys);
evaluator.mod_switch_to_next_inplace(x_squared);
cout << "+ noise budget in x_squared (with modulus switching): " << decryptor.invariant_noise_budget(x_squared) << " bits" << endl;evaluator.square(x_squared, x_4th);
evaluator.relinearize_inplace(x_4th, relin_keys);
evaluator.mod_switch_to_next_inplace(x_4th);
cout << "+ noise budget in x_4th (with modulus switching): " << decryptor.invariant_noise_budget(x_4th) << " bits" << endl;evaluator.square(x_4th, x_8th);
evaluator.relinearize_inplace(x_8th, relin_keys);
evaluator.mod_switch_to_next_inplace(x_8th);
cout << "+ noise budget in x_8th (with modulus switching): " << decryptor.invariant_noise_budget(x_8th) << " bits" << endl;decryptor.decrypt(x_8th, decrypted_result);
batch_encoder.decode(decrypted_result, pod_result);

这里对中间结果也进行解密,并输出其噪声预算的变化:

        这里仔细对比可以发现:虽然通过模数切换 x_squared 的噪声预算比之前少,但噪声预算的消耗速率较慢,故最后可以正确解密。

四、总结

        通过之前的介绍实验,我们能发现,有时候进行模数切换会损耗噪声预算,但是进行到一定乘法深度后,再进行切换就不会损耗噪声,这种情况是一定适合加入模数切换的。
        同时上面发现虽然降低了 x_squared 的噪声预算,但是噪声预算的消耗减慢,故这种情况也适合加入模数切换

        但是这些不意味着在每次计算后都应该进行模数切换,因为要权衡减少的预算和减缓消耗的速度,最好自己进行实验比对。"故为了在应用中实现噪声预算的最佳消耗速率,需要仔细选择插入模数切换的位置,并手动选择 coeff_modulus。"


下篇介绍对密文进行的 行旋转 和 列旋转(未完待续。。。)

http://www.tj-hxxt.cn/news/94437.html

相关文章:

  • 网站做支付按流量付费百度推广销售话术
  • 首次登陆建设银行网站图文解说爱站网长尾词挖掘
  • web网站开发毕业设计任务书seo优化师是什么
  • 松江郑州阳网站建设北京seo优化服务
  • 微信公众号关联网站百度网站关键词排名助手
  • 如何建网站费用多少网站推广优化排名seo
  • 做网站网上接单app优化方案
  • 网站建设服务器的选择方案有湖南广告优化
  • 传统网站怎么做前端模块成都网络营销
  • 深圳的网站建设的公司赚钱软件
  • wordpress显示的是文件目录结构广告优化师的工作内容
  • 天津做网站多少钱独立站seo是什么
  • 阿里云网站建设方案书是什么seo综合查询系统
  • 陇南做网站小红书怎么推广引流
  • 网站宣传方案石景山区百科seo
  • 动画制作软件有哪些搜狗seo怎么做
  • 专门做萝莉视频网站seo关键词是怎么优化的
  • 在线阅读小说网站怎么做广州推广排名
  • 网站建设销售前景阿里云域名注册网站
  • 提供手机网站建设企业襄阳百度开户
  • 想自己做网站推广广东网络seo推广公司
  • 交友网站做百度推广头条广告入口
  • 网站下拉箭头怎么做的推广app拿返佣的平台
  • 一家专门做特卖的网站seo服务外包客服
  • 网站建设费用包括哪些方面免费行情软件网站下载大全
  • 做b2c网站社区网站建设总结
  • 江山企业自适应网站建设首选济南最新消息今天
  • 网站开发周期表seo顾问服务
  • 营销型网站建设亏1信息流优化师简历
  • 有哪些做微博长图网站佛山百度网站快速排名