当前位置: 首页 > news >正文

网站建设实训心得体会电脑培训机构

网站建设实训心得体会,电脑培训机构,wordpress默认链接,微信小程序开发技术一直对np的线性运算不太清晰,正好上课讲到了,做一个笔记整个理解一下 1.向量和矩阵 在numpy中,一重方括号表示的是向量vector,vector没有行列的概念。二重方括号表示矩阵matrix,有行列。 代码显示如下: …

一直对np的线性运算不太清晰,正好上课讲到了,做一个笔记整个理解一下 

1.向量和矩阵

在numpy中,一重方括号表示的是向量vector,vector没有行列的概念。二重方括号表示矩阵matrix,有行列。

 

代码显示如下:

import numpy as np
a=np.array([1,2,3])
a.shape
#(3,)
b=np.array([[1,2,3],[3,4,5]])
b.shape
#(2, 3)
c=np.array([[1],[2],[3]])
c.shape
#(3, 1)

即使[1,2,3]、[[1,2,3]]看起来内容一样 使用过程中也会有完全不一样的变化。下面以向量乘法为例解释。

2.向量和向量乘法

1.* 对应对应位置相乘

普通的*:在numpy里表示普通的对应位置相乘,注意相乘的两个向量、矩阵要保证维数相同

a1=np.array([1,2,3])
a2=np.array([1,2,3])
a1*a2
#array([1, 4, 9])b1=np.array([[1,2,3]])
b2=np.array([[1,2,3]])
b1*b2
#array([[1, 4, 9]])b1=np.array([[1,2,3],[3,4,5]])
b2=np.array([[1,2,3],[3,4,5]])
b1*b2
# array([[ 1,  4,  9],
#        [ 9, 16, 25]])

2.广播机制

如果单纯出现维数对不上,python会报error

b1=np.array([[1,2]])
b2=np.array([[1,2,3]])
b1*b2
#operands could not be broadcast together with shapes (1,2) (1,3) 

但是,还有一种情况会出现乘出来一个好大的矩阵,这个情况常出现在无意之中把行、列的数字搞反的情况下。被称为广播机制,需要两个乘子都有一个维数是1,如果是对不上且不为1就会报错

Numpy中的广播机制,你确定正确理解了吗? - 腾讯云开发者社区-腾讯云

在普通的对应位置相乘,会出现 

a1=np.array([1,2,3])
a3=np.array([[1],[2],[3]])
a1*a3#broadcast together
# array([[1, 2, 3],
#        [2, 4, 6],
#        [3, 6, 9]])

倒过来也会出现

a1=np.array([1,2,3])
a3=np.array([[1],[2],[3]])
a3*a1#broadcast together
# array([[1, 2, 3],
#        [2, 4, 6],
#        [3, 6, 9]])

3.向量点乘np.dot

必须要(行向量,列向量)形式的输入

a1=np.array([1,2,3])
a3=np.array([[1],[2],[3]])
np.dot(a3,a1)
#array([14])
#ValueError: shapes (3,1) and (3,) not aligned: 1 (dim 1) != 3 (dim 0)

 都是行向量,不行

b1=np.array([[1,2,3]])
b2=np.array([[1,2,3]])
np.dot(b1,b2) 
#shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)

都是列向量,触发广播机制

a1=np.array([[1,2,3]])
a3=np.array([[1],[2],[3]])
np.dot(a3,a1)
# array([[1, 2, 3],
#        [2, 4, 6],
#        [3, 6, 9]])

3.矩阵和向量乘法

1.对应位置相乘

如果单纯采用*的方式进行矩阵和向量乘法,那就是广播机制

矩阵+向量

A1=np.array([[1,2,3],[2,3,4]])
b1=np.array([1,2,3])
A1*b1 #broadcast together
# array([[ 1,  4,  9],
#        [ 2,  6, 12]])

 对应的向量如果是矩阵形式,结果相同

A2=np.array([[1,2,3],[2,3,4]])
b2=np.array([[1,2,3]])
A2*b2 #broadcast together
# array([[ 1,  4,  9],
#        [ 2,  6, 12]])

相似的,如果维数对不上,不会触发广播机制

A3=np.array([[1,2,3],[2,3,4]])
b3=np.array([[1],[2],[3]])
A3*b3 #operands could not be broadcast together with shapes (2,3) (3,1) 

2.矩阵乘法

如果真正想要算矩阵*向量的矩阵乘法,要用np.dot

A4=np.array([[1,2,3],[2,3,4]])
b4=np.array([1,2,3])
np.dot(A4,b4)#dot product
#array([14, 20])

列向量也有类似结果

A4=np.array([[1,2,3],[2,3,4]])
b4=np.array([[1],[2],[3]])
np.dot(A4,b4)#dot product
# array([[14],
#        [20]])

4.矩阵矩阵乘法:

1.直接相乘

同样,也是对应位置相乘

A4=np.array([[1,2,3],[2,3,4]])
B4=np.array([[1,2,3],[4,5,6]])
A4*B4
# array([[ 1,  4,  9],
#        [ 8, 15, 24]])

 有广播机制

A4=np.array([[1,2,3],[2,3,4]])
B4=np.array([[1,2,3]])
A4*B4
# array([[ 1,  4,  9],
#        [ 2,  6, 12]])

2.np.dot:

需要第一个的列数和第二个的行数相对应

A4=np.array([[1,2,3],[2,3,4]])
B4=np.array([[1,2,3],[4,5,6]])
np.dot(A4,B4.T)
# array([[14, 32],
#        [20, 47]])A5=np.array([[1,2,3],[2,3,4]])
B5=np.array([[1,2,3],[4,5,6],[7,8,9]])
np.dot(A5,B5)
# array([[30, 36, 42],
#        [42, 51, 60]])

对不上会报错

A4=np.array([[1,2,3],[2,3,4]])
B4=np.array([[1,2,3],[4,5,6]])
np.dot(A4,B4)
# shapes (2,3) and (2,3) not aligned: 3 (dim 1) != 2 (dim 0)

http://www.tj-hxxt.cn/news/93116.html

相关文章:

  • 在上海注册公司怎么样靠谱深圳网站设计专家乐云seo
  • org域名做商业网站电商运营推广怎么做
  • cms建站步骤贵阳网站建设推广
  • 做网站之前的前期体验营销策略有哪些
  • wordpress限制根目录访问济南网站优化公司排名
  • 瑞安做网站建设佛山网站建设公司
  • 做素材网站存储问题网络营销推广seo
  • 网站备案ip地址段上海关键词优化方法
  • 网站导航栏设计代码江门网站建设模板
  • 露天做愛偷拍网站百度快照优化seo
  • 宁波做网站排名的公司有哪些一个万能的营销方案
  • 网站视差怎么做营销推广seo
  • 哪些网站可以做国外生意广告公司推广
  • 2013网站建设方案网络营销的未来发展趋势论文
  • 如何做公司的网站建设如何加入广告联盟赚钱
  • 惠济免费网站建设南宁百度seo排名优化软件
  • 手把手教你搭建自己的网站杭州网络推广网络优化
  • 记事本做网站报告兰州网络优化seo
  • 精仿源码社区网站源码济宁网站建设
  • c 做特产网站岳阳网站设计
  • 广州网站公司推荐广告门
  • 网站建设服务费记账分录培训机构排名全国十大教育机构排名
  • 微网站建设包括哪些内容新手怎么入行seo
  • 没企业可以做网站吗百度搜题在线使用
  • b2b的典型电商平台免费网站做seo
  • 网站做一样算不算侵权合肥网站seo费用
  • 开网站建设公司网站分析报告
  • php网站开发实例视频教程免费浏览网站推广
  • 自己做视频网站能赚钱吗免费b站网页推广
  • 网站建设走的路线风格seo什么意思中文意思