当前位置: 首页 > news >正文

织梦网站首页模板更换上海知名网站制作公司

织梦网站首页模板更换,上海知名网站制作公司,大连做企业网站的公司,做网站公司yuanmus目录 1.1 卷积神经网络基础 3.1 AlexNet网络结构详解与花分类数据集下载 4.1 VGG网络详解及感受野的计算 5.1 GoogLeNet网络详解 6.1 ResNet网络结构,BN以及迁移学习详解 总结(可以直接看总结) 1.1 卷积神经网络基础 视频讲解&#xf…

目录

1.1 卷积神经网络基础

3.1 AlexNet网络结构详解与花分类数据集下载

4.1 VGG网络详解及感受野的计算

5.1 GoogLeNet网络详解

6.1 ResNet网络结构,BN以及迁移学习详解

总结(可以直接看总结)


1.1 卷积神经网络基础

视频讲解:
1.1 卷积神经网络基础_哔哩哔哩_bilibili

发展不是一帆风顺的

全连接层:

卷积层()

目的:进行图像特征提取

特性:拥有局部感知机制,权值共享

扩展到多维

 特征总结:

  1. 卷积核的channel与输入特征层的channek相同
  2. 输出的特征矩阵channel与卷积核个数相同

sigmoid/Relu  两个激活函数  各有缺点:

Sigmoid:饱和时梯度值小,网络层数较深时易出现梯度消失
Relu:反向传播时出现非常大的梯度更新后导致权重分布中心小于零,导致该处导数始终为零,反向传播无法更新权重,即进入失活状态。

出现越界情况用padding处理(增补)

池化层()

和卷积层类似 但是要更简单

目的:对特征图像进行稀疏处理,减少数据运算量

(补充)反向传播(后面跳过了)

说明:本节理论较多,会枯燥,尽管内容不需要完全掌握,但是要大致理解,留有印象

误差的计算:

softmax:让结果满足概率分布(即概率和为1)  (猫/狗)

sigmoid:(人类/男人)

误差的反向传播:

3.1 AlexNet网络结构详解与花分类数据集下载

视频讲解:
3.1 AlexNet网络结构详解与花分类数据集下载_哔哩哔哩_bilibili

AlexNet(2012冠军)

该网络的亮点在于:

  • (1)首次利用 GPU进行网络加速训练。
  • (2)使用了 ReLu 激活函数,而不是传统的 sigmoid 激活函数以及 Tanh 激活函数。
  • (3)使用了 LRN 局部响应归一化。
  • (4)在全连接层的前两层中使用了 Dropout随机失活神经元操作,以减少过拟合。

中间的图像很好的诠释了AlexNet的好处,减少了过拟合的现象

解决方法:使用Dropout的方式在网络正传播过程中随机失活一部分神经元

经卷积后的矩阵尺寸大小计算公式为:N=(W-F+2P)/S+1
输入图片大小 W*W
Filter大小F*F
步长 S
padding的像素数P

4.1 VGG网络详解及感受野的计算

视频讲解:
4.1 VGG网络详解及感受野的计算_哔哩哔哩_bilibili

网络结构:

网络亮点: 

  • 通过堆叠多个3*3的卷积核来替代大尺度卷积核(减少所需参数 )
  • 通过堆善两个3x3的卷积核替代5x5的卷积核
  • 通过堆叠三个3x3的卷积核替代7x7的卷积核。

为什么这么干?
效果相同的情况下,参数更少。

5.1 GoogLeNet网络详解

网络结构:

网络中的亮点:

  • 引入了Inception结构(融合不同尺度的特征信息)
  • 使用1x1的卷积核进行降维以及映射处理    减少参数/特征矩阵深度
  • 添加两个辅助分类器帮助训练
  • 丢弃全连接层,使用平均池化层(大大减少模型参数)

注意:AlexNet和VGG都只有一个输出层,GooLeNet有三个输出层

6.1 ResNet网络结构,BN以及迁移学习详解

视频讲解:
6.1 ResNet网络结构,BN以及迁移学习详解_哔哩哔哩_bilibili

网络结构:

网络中的亮点:

  • 超深的网络结构(突破1000层)
  • 提出residual模块  
  • 使用Batch Normalization加速训练(丟奔dropout)

随着网络加深,梯度消失&&梯度爆炸现象越来越明显     BN等方式解决

Batch Normalization原理:
要让整个训练样本的数据集满足分布规律(均值为0方差为1)
退化问题,通过残差解决

迁移学习:
常见的迁移学习方式:

  • 1.载入权重后训练所有参数
  • 2.载入权重后只训练最后几层参数
  • 3.载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层

总结(可以直接看总结):

综上呢,其实就是延续上一篇文章(上)基于机器学习的图像识别——遥感图像分类(LeNet-5;AlexNet;VGGNet;GoogLeNet;ResNet)-CSDN博客

五种”神经网络模型“的进一步讲解,偏向于理论层面

但两篇文章整理的是不同博主的讲解视频,讲的都蛮好的,通过”对比学习“可以发现,二者间会有一部分共通之处——这些共同之处一定是基础/重点,当然我已经帮大家整理好了,请各位放心食用。

http://www.tj-hxxt.cn/news/92649.html

相关文章:

  • 专做眼镜批发的网站sem优化托管公司
  • 个人网站如何做流量关键词挖掘工具
  • 建设网站的目的和内容国际新闻快报
  • 旅游网站开发需求分析目的seo优化的常用手法
  • 个人网站的设计与实现参考文献seo入口
  • 腾讯文档wordpress谷歌seo网络公司
  • 网站建设与管理教学视频教程seo优化技巧
  • 网站360优化外贸推广代理
  • 网站 linux 服务器制作链接的app的软件
  • 大连网站制作公司费用多少seo网站推广怎么做
  • 深圳网站建设怎样网站流量查询工具
  • 怎么新建网站汕头百度网站推广
  • 央企八大设计院杭州网站优化服务
  • 企业网站空间不足怎么办网络营销策划的概念
  • 淘宝客做自己网站百度教育
  • 做网站需要什么人才如何开网站详细步骤
  • 代做计算机毕业设计网站怎么做电商平台
  • 铜陵市建设局网站怎么做营销推广方案
  • 做网站登录交换友情链接的平台有哪些
  • 阿里巴巴做国际网站多少钱广州网站优化外包
  • 公众号购买网站百度平台推广联系方式
  • 中国化学工程第三建设有限公司seo优化思路
  • 网站手机客户端如何开发阿里seo排名优化软件
  • 网站会员注册系统源码广告联盟点击赚钱平台
  • 响应式网站是啥意思seo建站公司
  • 基本原理网站建设港港网app下载最新版
  • wordpress前台优化营商环境 助推高质量发展
  • 医院手机网站源码营销宣传方式有哪些
  • 深圳横岗做网站的西安seo关键词推广
  • 建设一个类似于猪八戒的网站需要怎样做网络推广营销