当前位置: 首页 > news >正文

网站建设公司招聘面试廊坊seo排名

网站建设公司招聘面试,廊坊seo排名,微信公众号 网站开发,极速网站开发海鸥算法改进的深度极限学习机DELM的分类 文章目录海鸥算法改进的深度极限学习机DELM的分类1.ELM原理2.深度极限学习机(DELM)原理3.海鸥算法4.海鸥算法改进DELM5.实验结果6.参考文献7.Matlab代码1.ELM原理 ELM基础原理请参考:https://blog.c…

海鸥算法改进的深度极限学习机DELM的分类

文章目录

  • 海鸥算法改进的深度极限学习机DELM的分类
    • 1.ELM原理
    • 2.深度极限学习机(DELM)原理
    • 3.海鸥算法
    • 4.海鸥算法改进DELM
    • 5.实验结果
    • 6.参考文献
    • 7.Matlab代码

1.ELM原理

ELM基础原理请参考:https://blog.csdn.net/u011835903/article/details/111073635。

自动编码器 AE(Auto Encoder)经过训练可以将输入复制到输出。因为不需要标记数据,训练自动编码器是不受监督的。因此,将AE的思想应用到ELM中,使ELM的输入数据同样被用于输出,即输出Y=X。作为自编码器的极限学习机ELM-AE网络结构如图1所示。

图1

图1.ELM-AE网络结构图

若图1中m>L ,ELM-AE实现维度压缩,将高维度数据映射成低维度特征表达;若 m=L,ELM-AE实现等维度的特征表达;若 m<L ,ELM-AE实现稀疏表达,即原始数据的高维特征表达。

综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数(ai,bi)(a_i,b_i)(ai,bi)​​随机生成后正交。正交化后的优点有:

(1)根 据 J-L(Johnson-Lindensrauss) 定理,权重和偏置正交化可以将输入数据映射到不同或等维度的空间,从而实现不同功能的特征表达。

(2)权重和偏置的正交化设计可以去除特征以外的噪声,使特征之间均匀,且更加线性独立进而增强系统的泛化能力。

ELM-AE的输出可以用如下表达式表示:
xj=∑i=1LβiG(ai,bi,xj),ai∈Rm,βi∈Rm,j=1,2,...,N,aTa=I,bTb=1(1)x_j=\sum_{i=1}^L \beta_iG(a_i,b_i,x_j),a_i\in R^m,\beta_i\in R^m,j=1,2,...,N,a^Ta=I,b^Tb=1 \tag{1} xj=i=1LβiG(ai,bi,xj),aiRm,βiRm,j=1,2,...,N,aTa=I,bTb=1(1)
其中aaaaia_iai组成的矩阵,bbbbib_ibi​组成的向量。隐藏层的输出权重为:
β=(IC+HTH)−1HTX(2)\beta = (\frac{I}{C}+H^TH)^{-1}HTX \tag{2} β=(CI+HTH)1HTX(2)
其中,X=[x1,...,xN]X=[x_1,...,x_N]X=[x1,...,xN]是输入数据。

2.深度极限学习机(DELM)原理

根据ELM-AE的特征表示能力,将它作为深度极限学习机 DELM的基本单元。与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。

图2

图2.DELM模型训练过程

DELM的思想是通过最大限度地降低重构误差使输出可以无限接近原始输入,经过每一层的训练,可以学习到原始数据的高级特征。图2描述了DELM模型的训练过程,将输入数据样本X作为第1个ELM-AE的目标输出(X1=XX_1 =XX1=X),进而求取输出权值 β1β_1β1 ;然后将DELM第1个隐藏层的输出矩阵H1H_1H1当作下1个ELM−AEELM-AEELMAE的输入与目标输出(X2=XX_2=XX2=X),依次类推逐层训练,最后1层用ELMELMELM来训练,使用式(2)来求解DELM的最后1个隐藏层的输出权重βi+1\beta_{i+1}βi+1 。图2中Hi+1H_{i+1}Hi+1 是最后1个隐藏层的输出矩阵,T是样本标签。 Hi+1H_{i+1}Hi+1每1层隐藏层的输入权重矩阵为Wi+1=βi+1TW_{i+1}=\beta_{i+1}^TWi+1=βi+1T

3.海鸥算法

海鸥搜索算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/107535864

4.海鸥算法改进DELM

由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用海鸥算法对DELM的初始权重进行优化。适应度函数设计如下:
fitness=2−Accuracy(train)−Accuracy(test)fitness=2-Accuracy(train)-Accuracy(test) fitness=2Accuracy(train)Accuracy(test)
适应度函数为,训练集和测试集(验证集)的分类错误率,分类错误率越低,代表分类正确率越高。

5.实验结果

本文对乳腺肿瘤数据进行分类。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本 。

%% 导入数据
load data.mat
% 产生训练集/测试集
a = 1:569;
Train = data(a(1:500),:);
Test = data(a(501:end),:);
% 训练数据
P_train = Train(:,3:end);
T_train = Train(:,2);
% 测试数据
P_test = Test(:,3:end);
T_test = Test(:,2);

DELM的参数设置如下:

这里DELM采用1层结构,每层的节点数分别为32。采用sigmoid激活函数。

%% DELM参数设置
ELMAEhiddenLayer = [32];%ELM—AE的隐藏层数,[n1,n2,...,n],n1代表第1个隐藏层的节点数。
ActivF = 'sig';%ELM-AE的激活函数设置
C = inf; %正则化系数

海鸥算法的相关参数设置如下:

%% 优化算法参数设置:
%计算权值的维度
dim=0;
for i = 1:length(ELMAEhiddenLayer)dim = dim+ ELMAEhiddenLayer(i)*size(P_train,2);
end
popsize = 20;%种群数量
Max_iteration = 50;%最大迭代次数
lb = -1;%权值下边界
ub = 1;%权值上边界
fobj = @(X)fun(X,P_train,T_train,P_test,T_test,ELMAEhiddenLayer,ActivF,C);
[Best_pos,Best_score,SSA_cg_curve]=SSA(popsize,Max_iteration,lb,ub,dim,fobj);

最终预测结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,无论训练集还是测试集优化后的结果,均更优。

6.参考文献

[1]颜学龙,马润平.基于深度极限学习机的模拟电路故障诊断[J].计算机工程与科学,2019,41(11):1911-1918.

7.Matlab代码

http://www.tj-hxxt.cn/news/90072.html

相关文章:

  • 邵东做网站百度手机助手下载
  • 网店怎么开怎么运营seo软件优化工具软件
  • 餐饮公司的网站建设西安seo服务
  • 在北京注册公司在哪个网站上广州seo关键词优化是什么
  • 返利网站怎么做的晚上国网app
  • 天津市建设工程信息网站百度网盘登录入口 网页
  • 网站建设有云端吗重庆森林壁纸
  • 网站建设中 英文最近的大新闻
  • 大气的网站模板钓鱼网站制作教程
  • 哪些网站做批发佛山全市核酸检测
  • 做网站要学点什么漯河网站推广公司
  • 维护一个网站优化大师
  • 目前做那些网站能致富南宁市优化网站公司
  • 广点通企业网站优化方案案例
  • 做爰网站爱情岛在线之家
  • 蝶山网站建设网络营销包括几个部分
  • 网站建设中页面模板企业网站设计
  • 做淘宝客需要自己建网站吗怎样利用互联网进行网络推广
  • 为什么小城市做不出来好的网站网站设计与制作公司
  • 在银行网站如何做理财风险评测aso优化榜单
  • 国家市场监督管理总局是什么级别windows优化大师会员
  • 长沙做网站哪家公司好计算机培训机构排名前十
  • 给自己的网站做镜像网站搜索引擎优化缩写
  • 网站公司建设长沙seo计费管理
  • 网络营销就是seo正确吗江苏seo和网络推广
  • 腾讯云和wordpress湖南企业竞价优化
  • 公司建立网站怎么做分录网络培训网站
  • 购物网站app开发企业查询宝
  • 网站做app软文推广的好处
  • 怎么自己做彩票网站西安百度首页优化