当前位置: 首页 > news >正文

网络设计与制作是什么意思长沙网站seo技术厂家

网络设计与制作是什么意思,长沙网站seo技术厂家,昆明商城网站开发,中国建设部网站目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022a 3.部分核心程序 ................................................................ %调制识别 len1 func_f…

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

................................................................
%调制识别
len1 = func_fsk_psk_check(p1);
len2 = func_fsk_psk_check(p2);
len3 = func_fsk_psk_check(p3);
len4 = func_fsk_psk_check(p4);%根据参数获得FSK和PSK区分参数
Level= (mean([len1,len2]) - mean([len3,len4]))/2;%分别提取FSK和PSK的不同调制方式的特征参数
char1   = real(func_para_check(y_2FSKn,N0));
char2   = real(func_para_check(y_4FSKn,N0));
char3   = real(func_para_check(y_2PSKn,N0));
char4   = real(func_para_check(y_4PSKn,N0));%通过GRNN神经网络进行训练
char    = [char1;char2]';
T       = [1;2]';
net_fsk = newgrnn(char,T,1.2);char    = [char3;char4]';
T       = [1;2]';
net_psk = newgrnn(char,T,1.2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%加载信号进行测试
%通过大量的循环测试,计算正确率
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
zql  = 0;%运行的时候,尽量将下面的两个参数指标设置大点,这样结果才精确
MTKL  = 50;
SNRS  = [-10:1:20];
Bers  = zeros(length(SNRS),1);for jj = 1:length(SNRS)for i = 1:MTKL[SNRS(jj),i]rng(i);%长度N      = N0;%SNRSNR    = SNRS(jj);%2FSKy_2FSK = func_2FSK(N);%4FSKy_4FSK = func_4FSK(N);%BPSKy_2PSK = func_2PSK(N);%QPSKy_4PSK = func_4PSK(N);%设置单独的一种调制信号tmps   = [2,2,2,2];%4PSKif tmps(1) == 1datas = y_2FSK;endif tmps(1) == 2datas = y_4FSK;endif tmps(1) == 3datas = y_2PSK;endif tmps(1) == 4datas = y_4PSK;enddatas  = func_multipath(datas);data   = func_add_noise(datas,SNR); [p,f] = func_power(data,Ns);len   = func_fsk_psk_check(p);flag  = 0;%首先进行FSK和PSK两种模式的区分if len >= Level%为FSK模式%根据识别参数进行调制类型的辨识char = real(func_para_check(data,length(data)));T    = round(sim(net_fsk,char'));if T == 1flag = 1;endif T == 2flag = 2;endelse%为PSK模式%根据识别参数进行调制类型的辨识char = real(func_para_check(data,length(data)));T    = round(sim(net_psk,char'));if T == 1flag = 3;endif T == 2flag = 4;endendif flag == tmps(1)zql = zql + 1;endend%识别正确率Bers(jj) = zql/MTKL;zql      = 0;
endR = 100*mean(Bers,2);
figure;
plot(SNRS,R,'b-o','linewidth',2);
grid on
xlabel('snr');
ylabel('调制识别率');
axis([min(SNRS)-1,max(SNRS)+1,0,110]);save r1.mat SNRS R
01_131m

4.算法理论概述

        本课题,我们主要对MPSK和MFSK调制类型进行识别。在进行信号调制方式区分之前,首先需要对PSK和FSK进行区分,提出了一种基于信号功率谱的PSK和FSK调制方式的识别方法。信号的功率谱计算过程,是一个计算随机过程的统计特性的过程,其中平稳随机过程的功率谱计算过程是一个确定的函数,计算信号的功率谱的过程即功率谱估计。是通过给定的信号样本去估计平稳随机信号的功率谱密度,通过计算信号的功率谱估计可以分析信号的能量随着频率分布的变化情况。

      信号的功率谱计算方法可以分为经典谱估计方法和现代谱估计方法目前应用较为广泛的是经典谱估计算法。经典谱估计方法主要分为直接法和间接法两大类别,本文将通过直接法对调制信号的功率谱进行估计,直接法的主要流程是先计算调制信号的快速傅里叶变换,将调制信号从时域变换到频域,然后将频域结果与其共轭结果相乘,从而得到信号的功率谱估计。

       该算法的整体流程图如下所示

        GRNN,即General Regression Neural Network,中文全称为广义回归神经网络,是由The Lockheed Palo Alto研究实验室在1991年提出的。GRNN是一种新型的基于非线性回归理论的神经网络模型[43,44]。GRNN是建立在非参数核回归基础之上的,该神经网络是以测试样本为后验条件,并从观测样本中计算得到自变量和因变量之间的概率密度函数,然后在计算出因变量关于自变量的回归值。由于GRNN不需要规定模型的类型,只需要设置神经网络的光滑因子参数,GRNN神经网络的光滑因子参数的取值对神经网络的输出影响较大,当光滑因子参数较大的时候,其对应的神经元所覆盖的输入区域就越大;当光滑因子参数较小的时候,神经网络对应的径向基函数曲线较陡,因此神经网络输出结果更接近期望值,但此时光滑度越差。

       GRNN结构如图所示,整个网络包括输入层、模式层、求和层与输出层。

5.算法完整程序工程

OOOOO

OOO

O

http://www.tj-hxxt.cn/news/89573.html

相关文章:

  • 北京网站建设服务器维护百度网盘网页版入口官网
  • 网站做引流企业网站推广策略
  • 注册网站应注意事项搜索引擎营销的基本方法
  • 中国城乡建设三农委员会官方网站seo关键词优化平台
  • 网站策划模版如何使用免费b站推广网站
  • 如何加快网站收录武汉网站提升排名
  • 番禺网站设计公司福州百度分公司
  • 广告制作服务方案seo关键词排名优化联系方式
  • 湖南做网站 要上磐石网络百度推广怎么收费标准
  • 深圳css3网站开发多少钱谷歌在线浏览器免费入口
  • 个人网站做公司网站app拉新渠道商
  • 北京网站建设维护郑州网站建设最便宜
  • 长春火车站电话百度问答平台
  • 如何用was做网站压力测试长春网站建设方案推广
  • 建设局网站模板百度网址大全 官网
  • 怎么做网站小图标下载应用商店
  • 中央人民政府网站百度指数查询入口
  • 网站开发与管理网站排名查询平台
  • 响应式网站模块百度有哪些app产品
  • 苏州网站建设业务的公司爱站长
  • 有哪些网站使用ftp百度推广个人怎么开户
  • wordpress站群是什么全网营销国际系统
  • 新疆工商官网泽成seo网站排名
  • 北京网站优化网2024年瘟疫大爆发
  • 网站分站的实现方法今日西安头条最新消息
  • 加强企业网站建设的通知b站推广入口2023破解版
  • 网站正在建设中 手机版百度seo公司
  • 网站建设送企业邮箱吗制作网站的app
  • 做外贸网站商城百度惠生活商家入驻
  • 北京的软件公司百度搜索引擎关键词优化