当前位置: 首页 > news >正文

江西合创建设工程有限公司 网站搜索引擎优化哪些方面

江西合创建设工程有限公司 网站,搜索引擎优化哪些方面,计算机二级网页制作基础,网络营销是什么诈骗【Python–NetworkX】函数说明代码讲解 文章目录【Python--NetworkX】函数说明代码讲解1. 介绍1.1 前言1.2 图的类型(Graph Types)1.3 常用方法2. 代码示例1. 介绍 1.1 前言 NetworkX是复杂网络研究领域中的常用Python包。 1.2 图的类型(G…

【Python–NetworkX】函数说明+代码讲解

文章目录

  • 【Python--NetworkX】函数说明+代码讲解
    • 1. 介绍
      • 1.1 前言
      • 1.2 图的类型(Graph Types)
      • 1.3 常用方法
    • 2. 代码示例

1. 介绍

1.1 前言

NetworkX是复杂网络研究领域中的常用Python包。

1.2 图的类型(Graph Types)

允许以可哈希的object作为节点,任何Python object作为边属性。

如何选择使用哪种图:
1
这里解释一下什么是平行边:连接一对顶点的两条边叫做平行边,即,无向图中,两个顶点间有多条边,他们叫做平行边,打个比方,北京和上海直接可以 是公路、铁路、飞机,那么他们互为平行边。

1.3 常用方法

  • 创建一个空的图
    1)无向图:G = nx.Graph()
    2)有向图:DG = nx.DiGraph()
  • 将有向图转换为无向图:G = nx.Graph(DG)
  • 图是否有向:G.is_directed() 返回布尔值
  • 添加节点
    1)直接添加一个节点(任何object都可以作为节点,包括另一个图)G.add_node(1)、G.add_node(DG)
    2)从任何容器加点:a list, dict, set or even the lines from a file or the nodes from another graph…;G.add_nodes_from() 或 nx.path_graph()
  • 添加边
    1)添加一条边 G.add_edge(u, v)
    2)添加一个边的列表 G.add_edges_from([(1, 2), (1, 3)])
    3)添加一个边的collection G.add_edges_from(H.edges)
    4)如果添加的边的点不存在于图中,会自动添上相应节点而不报错
  • 属性attribute
    1)图的节点/边/图都可以在关联的attribute字典中以键值对key/value形式存储attribute(key一定要是可哈希的)
    2)默认情况下属性字典是空的
    3)可以通过add_edge() add_node() 方法或直接操作分别名为graph edges nodes的属性字典来进行操作

2. 代码示例

import networkx as nx
import numpy as np #定义图的节点和边 
nodes=['0','1','2','3','4','5','a','b','c'] 
edges=[('0','0',1),('0','1',1),('0','5',1),('0','5',2),('1','2',3),('1','4',5),('2','1',7),('2','4',6),('a','b',0.5),('b','c',0.5),('c','a',0.5)] plt.subplots(1,2,figsize=(10,3)) #定义一个无向图和有向图 
G1 = nx.Graph() 
G1.add_nodes_from(nodes) 
G1.add_weighted_edges_from(edges) G2 = nx.DiGraph() 
G2.add_nodes_from(nodes) 
G2.add_weighted_edges_from(edges) pos1=nx.circular_layout(G1) 
pos2=nx.circular_layout(G2) #画出无向图和有向图 
plt.subplot(121) 
nx.draw(G1,pos1, with_labels=True, font_weight='bold') 
plt.title('无向图',fontproperties=myfont) 
plt.axis('on') 
plt.xticks([]) 
plt.yticks([]) plt.subplot(122) 
nx.draw(G2,pos2, with_labels=True, font_weight='bold') 
plt.title('有向图',fontproperties=myfont) 
plt.axis('on') 
plt.xticks([]) 
plt.yticks([]) plt.show() #控制numpy输出小数位数 
np.set_printoptions(precision=3)  #邻接矩阵 
A = nx.adjacency_matrix(G1) 
print('邻接矩阵:\n',A.todense()) 
邻接矩阵: [[0.  0.  0.  0.  5.  0.  0.  0.  6. ] [0.  0.  0.  2.  0.  0.  0.  0.  0. ] [0.  0.  0.  0.  0.  0.5 0.5 0.  0. ] [0.  2.  0.  1.  1.  0.  0.  0.  0. ] [5.  0.  0.  1.  0.  0.  0.  0.  7. ] [0.  0.  0.5 0.  0.  0.  0.5 0.  0. ] [0.  0.  0.5 0.  0.  0.5 0.  0.  0. ] [0.  0.  0.  0.  0.  0.  0.  0.  0. ] [6.  0.  0.  0.  7.  0.  0.  0.  0. ]] #关联矩阵 
I = nx.incidence_matrix(G1) 
print('\n关联矩阵:\n',I.todense()) 
关联矩阵: [[1. 1. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 1. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 1. 0. 0. 0.] [0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 0. 0. 1. 0. 0. 0. 0. 1.] [0. 0. 0. 0. 1. 0. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 0. 0. 0. 0. 1. 0.]] #拉普拉斯矩阵 
L=nx.laplacian_matrix(G1) 
print('\n拉普拉斯矩阵:\n',L.todense()) 
拉普拉斯矩阵: [[11.   0.   0.   0.  -5.   0.   0.   0.  -6. ] [ 0.   2.   0.  -2.   0.   0.   0.   0.   0. ] [ 0.   0.   1.   0.   0.  -0.5 -0.5  0.   0. ] [ 0.  -2.   0.   3.  -1.   0.   0.   0.   0. ] [-5.   0.   0.  -1.  13.   0.   0.   0.  -7. ] [ 0.   0.  -0.5  0.   0.   1.  -0.5  0.   0. ] [ 0.   0.  -0.5  0.   0.  -0.5  1.   0.   0. ] [ 0.   0.   0.   0.   0.   0.   0.   0.   0. ] [-6.   0.   0.   0.  -7.   0.   0.   0.  13. ]] #标准化的拉普拉斯矩阵 
NL=nx.normalized_laplacian_matrix(G1) 
print('标准化的拉普拉斯矩阵:\n',NL.todense()) 
标准化的拉普拉斯矩阵: [[ 1.     0.     0.     0.    -0.418  0.     0.     0.    -0.502] [ 0.     1.     0.    -0.707  0.     0.     0.     0.     0.   ] [ 0.     0.     1.     0.     0.    -0.5   -0.5    0.     0.   ] [ 0.    -0.707  0.     0.75  -0.139  0.     0.     0.     0.   ] [-0.418  0.     0.    -0.139  1.     0.     0.     0.    -0.538] [ 0.     0.    -0.5    0.     0.     1.    -0.5    0.     0.   ] [ 0.     0.    -0.5    0.     0.    -0.5    1.     0.     0.   ] [ 0.     0.     0.     0.     0.     0.     0.     0.     0.   ] [-0.502  0.     0.     0.    -0.538  0.     0.     0.     1.   ]] #有向图拉普拉斯矩阵 
DL=nx.directed_laplacian_matrix(G2) 
print('\n有向拉普拉斯矩阵:\n',DL) 
有向拉普拉斯矩阵: [[ 0.889 -0.117 -0.029 -0.087 -0.319 -0.029 -0.029 -0.129 -0.242] [-0.117  0.889 -0.026 -0.278 -0.051 -0.026 -0.026 -0.114 -0.056] [-0.029 -0.026  0.994 -0.012 -0.009 -0.481 -0.481 -0.025 -0.01 ] [-0.087 -0.278 -0.012  0.757 -0.097 -0.012 -0.012 -0.052 -0.006] [-0.319 -0.051 -0.009 -0.097  0.994 -0.009 -0.009 -0.041 -0.434] [-0.029 -0.026 -0.481 -0.012 -0.009  0.994 -0.481 -0.025 -0.01 ] [-0.029 -0.026 -0.481 -0.012 -0.009 -0.481  0.994 -0.025 -0.01 ] [-0.129 -0.114 -0.025 -0.052 -0.041 -0.025 -0.025  0.889 -0.045] [-0.242 -0.056 -0.01  -0.006 -0.434 -0.01  -0.01  -0.045  0.994]] #拉普拉斯算子的特征值 
LS=nx.laplacian_spectrum(G1) 
print('\n拉普拉斯算子的特征值:\n',LS) 
拉普拉斯算子的特征值: [-1.436e-15  0.000e+00  4.610e-16  7.000e-01  1.500e+00  1.500e+00 4.576e+00  1.660e+01  2.013e+01] #邻接矩阵的特征值 
AS=nx.adjacency_spectrum(G1) 
print('邻接矩阵的特征值:\n',AS) 
邻接矩阵的特征值: [12.068+0.000e+00j  2.588+0.000e+00j -7.219+0.000e+00j -4.925+0.000e+00j -1.513+0.000e+00j  1.   +0.000e+00j -0.5  +2.393e-17j -0.5  -2.393e-17j0.  +0.000e+00j]#无向图的代数连通性 
AC=nx.algebraic_connectivity(G1) 
print('无向图的代数连通性:\n',AC) 
无向图的代数连通性: 0.0 #图的光谱排序 
SO=nx.spectral_ordering(G1) 
print('图的光谱排序:\n',SO) 
图的光谱排序: ['4', '2', '1', '0', '5', 'b', 'c', 'a', '3'] 
http://www.tj-hxxt.cn/news/87600.html

相关文章:

  • 沈阳妇科seo技术公司
  • 网站目标百度官方网站首页
  • 镇江网站建设制作梅州网络推广
  • 做预定网站的作用百度推广外推联系方式
  • 网站开发需要用到java吗长沙网站制作公司哪家好
  • 两学一做知识竞赛网站怎么创建网站赚钱
  • 长沙哪些公司做网站谷歌浏览器官网
  • 做艺术品拍卖的网站独立站谷歌seo
  • 东莞网站建设销售前景怎么样seo属于什么
  • 网站做实名认证如何制作网站最简单的方法
  • wordpress怎么取消谷歌字体上海百度首页优化
  • 外贸网站改版公司哪家好西安seo工作室
  • 怎么用织梦做本地网站无锡seo网站管理
  • 神州顺利办深一做网站站长工具无忧
  • 网站建设单位seo引擎优化方案
  • 成都网站制作scgckj河南网站排名
  • 蜘蛛云建网站怎样一个完整的策划案范文
  • 银川做企业网站搜狗指数官网
  • 网站建设设惠州seo招聘
  • 想做水果外卖怎么做网站一站式网络推广服务
  • 拟采用建站技术贴吧友情链接在哪
  • 安顺网站开发互联网推广员是做什么
  • 顺丰电子商务网站建设学生制作个人网站
  • 案例 网站大一网页设计作业成品
  • 昆明企业为什么要做网站seo推广软
  • 广西住房和城乡建设厅官网桂建云seo01
  • iis网站连接数公司网络推广服务
  • 手机网站建设方案某个产品营销推广方案
  • 公司网站建设需推广外链平台
  • 学做标书网站怎么建网站免费的