当前位置: 首页 > news >正文

网站app定制青岛网站制作推广

网站app定制,青岛网站制作推广,网页设计与制作轮播图教程,如何建立外卖网站目录 编程实现 kNN 算法。一、步骤二、实现代码三、总结知识1、切片2、iloc方法3、归一化4、MinMaxScale()5、划分测试集、训练集6、KNN算法 .py 编程实现 kNN 算法。 1、读取excel表格存放的Iris数据集。该数据集有5列,其中前4列是条件属性…

目录

  • 编程实现 kNN 算法。
    • 一、步骤
    • 二、实现代码
    • 三、总结知识
      • 1、切片
      • 2、iloc方法
      • 3、归一化
      • 4、MinMaxScale()
      • 5、划分测试集、训练集
      • 6、KNN算法
  • .py

编程实现 kNN 算法。

1、读取excel表格存放的Iris数据集。该数据集有5列,其中前4列是条件属性,最后1列是类别(已经表示为数值)。
2、对数据集进行按列归一化,使每列的取值范围是[0,1].
3、从数据集中随机选取70%作为训练数据集,剩下30%用来测试,k=5.
4、输出测试数据的分类正确率,即正确分类的测试样本数除以总的测试样本数。

一、步骤

①准备数据,对数据进行预处理
②计算测试样本点(也就是待分类点)到其他每个样本点的距离 。
③对每个距离进行排序,然后选择出距离最小的K个点。
④对K个点所属的类别进行比较,根据少数服从多数的原则,将测试样本点归入在K个点中占比最高的那一类。

二、实现代码

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import accuracy_score
# 读取excal表格数据
iris_data=pd.read_csv('Iris.csv')

在这里插入图片描述

# 获取条件属性和类别
x=iris_data.iloc[:,:-1] #截取前4列属性
y=iris_data.iloc[:,-1] #截取最后一列类别

在这里插入图片描述
在这里插入图片描述

# 数据归一化
scaler=MinMaxScaler()
x_normalized=scaler.fit_transform(x)

在这里插入图片描述

# 划分测试集30%、训练集70%
x_train,x_text,y_train,y_text=train_test_split(x_normalized,y,test_size=0.3,random_state=42)knn_classifier=KNeighborsClassifier(n_neighbors=5)# 5个最近相邻作为参考
knn_classifier.fit(x_train,y_train)# 训练分类器y_pred=knn_classifier.predict(x_text)# 训练好的分类剩下的测试集
accuracy=accuracy_score(y_pred,y_text)# 比较测试精度

在这里插入图片描述

三、总结知识

1、切片

语法:

start:stop:step

start:起始索引
stop:终止索引
step:步长
举例

a=[1,2,3,4,5,6,7,8,9,10]
a[2:5:]

在这里插入图片描述

a[::-1]

在这里插入图片描述

a[-1::]

在这里插入图片描述

a[:-1:]

在这里插入图片描述

a[-5:-1:]

在这里插入图片描述

2、iloc方法

iloc是Pandas中按位置(整数位置)索引数据的方法

DataFrame.iloc[索引行,索引列]

其中索引行,索引列可以是单个整数、整数列表/数组、切片对象

iloc[:,:-1] #取前四列
iloc[:,-1] #取最后一列

3、归一化

什么是归一化
归一化是一种数据处理方法,它将数据转换为一定范围内的数值。这个范围可以是任意的,但是最常用的范围是0到1或-1到1之间。归一化的作用是,使得不同数据在参与运算和比较时更加公平和准确,从而提高模型的精度和可靠性。
为什么要归一化
在机器学习中,由于不同的特征在量级和范围上的不同,使得它们的贡献不同。在一些模型中,例如kNN、KMeans等,特征之间的距离就成了模型的核心,而这些模型在计算距离时需要保证特征之间具有同样的权重,这就需要对特征进行归一化。对于另一些模型如神经网络,特征之间的权重影响了模型的收敛速度和稳定性,进行归一化可以加快收敛速度和降低过拟合的情况。

4、MinMaxScale()

MinMaxScaler 是 scikit-learn 库中的一个类,用于进行最小-最大缩放(归一化)操作。归一化是一种将数据缩放到指定范围的方法,通常是 [0, 1]。这有助于确保不同特征之间的数值差异不会对机器学习模型产生不良影响。
具体来说,MinMaxScaler 将每个特征缩放到给定的最小值和最大值之间。其主要方法是使用以下公式
在这里插入图片描述

from sklearn.preprocessing import MinMaxScaler# 创建MinMaxScaler对象
scaler = MinMaxScaler()# 对数据进行归一化
X_normalized = scaler.fit_transform(X)

fit_transform 方法将计算训练集的最小值和最大值,并使用上述公式对训练集进行归一化

5、划分测试集、训练集

X_train, X_test, y_train, y_test = train_test_split(X_normalized, y, test_size=0.3, random_state=42)
X_normalized: 归一化后的特征矩阵,即条件属性。
y: 目标(类别)列。
这行代码将数据集拆分为训练集和测试集,其中:X_train: 训练集的特征矩阵。
X_test: 测试集的特征矩阵。
y_train: 训练集的目标(类别)。
y_test: 测试集的目标(类别)。

6、KNN算法

knn_classifier = KNeighborsClassifier(n_neighbors=5)

创建了一个 kNN 分类器对象。n_neighbors=5 表示选择最近的5个邻居作为参考来进行分类

knn_classifier.fit(X_train, y_train)

使用训练数据来拟合(训练)kNN 分类器。X_train 是训练集的特征矩阵,y_train 是训练集的目标(类别)列。通过这个过程,kNN 分类器学会了如何根据特征对数据进行分类

.py

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import accuracy_score# 读取Excel表格数据用csv存储
iris_data = pd.read_csv('Iris.csv')# 获取条件属性和类别
X = iris_data.iloc[:, :-1]  # 前4列是条件属性
y = iris_data.iloc[:, -1]   # 最后1列是类别# 对数据进行按列归一化
scaler = MinMaxScaler()
X_normalized = scaler.fit_transform(X)# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_normalized, y, test_size=0.3)# 创建kNN分类器并进行训练
knn_classifier = KNeighborsClassifier(n_neighbors=5)
knn_classifier.fit(X_train, y_train)# 在测试集上进行预测
y_pred = knn_classifier.predict(X_test)# 计算分类正确率
accuracy = accuracy_score(y_test, y_pred)
print(f"分类正确率: {accuracy}")
http://www.tj-hxxt.cn/news/87343.html

相关文章:

  • pb代做网站网站优化外包费用
  • 电脑传奇网站百度站长工具是什么意思
  • 菏泽哪里有做网站的郑州百度公司地址
  • 网站怎么查哪家公司做的公众号seo排名软件
  • 招投标网站的建设制作能打开各种网站的浏览器下载
  • 大连专业模板网站制作公司高质量外链代发
  • 国际新闻最新消息今天新闻大事件 中方seo顾问是什么
  • 口碑好的企业网站开发首页关键词优化公司
  • 网站建设行业一键生成个人网站
  • 机器人学做玩 网站西安网站推广慧创科技
  • 免费申请公司网站百度公司销售卖什么的
  • dede中英文企业网站电脑培训学校课程
  • 如何做网站公众号推广seo优化中商品权重主要由什么决定
  • 建站能赚钱吗十大网站排行榜
  • 微信外链网站西安网站seo技术
  • 做企业网站步骤专业竞价托管哪家好
  • 京东淘宝网站是怎么做的天津百度推广电话号码
  • 17网站一起做网店新塘怎样才能上百度
  • 怎样让google收录网站朝阳区seo搜索引擎优化介绍
  • 做元器件上什么网站百度排名
  • 做阀门的英文网站怎么写推广图片大全
  • 安阳网站推广微信推广平台收费标准
  • 网站备案 法人代表汕头百度网站推广
  • 网站服务器系统盘满了怎么清理最靠谱的十大教育机构
  • 电商网站技术方案手机营销推广方案
  • 龙口网站建设公司官方百度平台
  • 用php做网站流程产品推广方式
  • 如何建立外贸网站关键词采集网站
  • 微信商城怎么开商城网络营销乐云seo
  • 蒙古文政府网站群建设资料专业的网站建设公司