当前位置: 首页 > news >正文

有关网站开发的外文文献免费设计模板网站

有关网站开发的外文文献,免费设计模板网站,商标注册查询系统官网,北京市城乡建设部网站首页缺失值处理 缺失值的处理思路 如果想探究如何处理无效值, 首先要知道无效值从哪来, 从而分析可能产生的无效值有哪些类型, 在分别去看如何处理无效值 什么是缺失值 一个值本身的含义是这个值不存在则称之为缺失值, 也就是说这个值本身代表着缺失, 或者这个值本身无意义, 比如…

缺失值处理

缺失值的处理思路

如果想探究如何处理无效值, 首先要知道无效值从哪来, 从而分析可能产生的无效值有哪些类型, 在分别去看如何处理无效值

  • 什么是缺失值

    一个值本身的含义是这个值不存在则称之为缺失值, 也就是说这个值本身代表着缺失, 或者这个值本身无意义, 比如说 null, 比如说空字符串

    在这里插入图片描述

    关于数据的分析其实就是统计分析的概念, 如果这样的话, 当数据集中存在缺失值, 则无法进行统计和分析, 对很多操作都有影响

  • 缺失值如何产生的

    在这里插入图片描述

    Spark 大多时候处理的数据来自于业务系统中, 业务系统中可能会因为各种原因, 产生一些异常的数据

    例如说 因为前后端的判断失误, 提交了一些非法参数. 再例如说因为业务系统修改 MySQL 表结构产生的一些空值数据等. 总之在业务系统中出现缺失值其实是非常常见的一件事, 所以大数据系统就一定要考虑这件事.

  • 缺失值的类型

    常见的缺失值有两种

    • null, NaN 等特殊类型的值, 某些语言中 null 可以理解是一个对象, 但是代表没有对象, NaN 是一个数字, 可以代表不是数字

      针对这一类的缺失值, Spark 提供了一个名为 DataFrameNaFunctions 特殊类型来操作和处理

    • “Null”, “NA”, " " 等解析为字符串的类型, 但是其实并不是常规字符串数据

      针对这类字符串, 需要对数据集进行采样, 观察异常数据, 总结经验, 各个击破

  • DataFrameNaFunctions

    DataFrameNaFunctions 使用 Dataset 的 na 函数来获取

    val df = ...
    val naFunc: DataFrameNaFunctions = df.na
    

    当数据集中出现缺失值的时候, 大致有两种处理方式, 一个是丢弃, 一个是替换为某值, DataFrameNaFunctions 中包含一系列针对空值数据的方案

    • DataFrameNaFunctions.drop 可以在当某行中包含 null 或 NaN 的时候丢弃此行
    • DataFrameNaFunctions.fill 可以在将 null 和 NaN 充为其它值
    • DataFrameNaFunctions.replace 可以把 null 或 NaN 替换为其它值, 但是和 fill 略有一些不同, 这个方法针对值来进行替换
  • 如何使用 SparkSQL 处理 null 和 NaN(Double.NaN → Not a number) ?

    首先要将数据读取出来, 此次使用的数据集直接存在 NaN, 在指定 Schema 后, 可直接被转为 Double.NaN

    @Test
    def nullAndNaN():Unit ={// 2. 导入数据集// 3. 读取数据集//    1.通过Spark-csv自动的推断类型来读取,推断数字的时候会将NaN推断为字符串
    //    spark.read
    //      .option("header",true)
    //      .option("inferSchema",true)
    //      .csv(....)//    2. 直接读取字符串,在后续的操作中使用 map 算子转类型
    //    spark.read.csv().map(row => row....)//    3. 指定 Schema ,不要自动推断// 创建 Schemaval schema = StructType(List(StructField("id", LongType),StructField("year", IntegerType),StructField("month", IntegerType),StructField("day", IntegerType),StructField("session", IntegerType),StructField("pm", DoubleType)))// Double.NaNval sourceDF = spark.read.option("header",true).schema(schema).csv("./dataset/beijingpm_with_nan.csv") // pm下的NaN 自动转为 Double.NaNsourceDF.show()
    }
    

    在这里插入图片描述

    对于缺失值的处理一般就是丢弃和填充

    • 丢弃包含 null 和 NaN 的行

      // 4.丢弃
      // 2019,12,12,Nam
      // 规则:
      //    1. any, 只要有一个 NaN 的行就丢弃
      sourceDF.na.drop("any").show() // sourceDF.na.drop().show() 默认 any
      //    2. all, 所有数据都是 NaN 的行才丢弃
      sourceDF.na.drop("all").show()
      //    3. 某些列的规则
      sourceDF.na.drop("any",List("year","month","day")).show()**
      
    • 填充包含 null 和 NaN 的列

      **// 5.填充// 规则://    1. 针对所有列数据进行默认值填充sourceDF.na.fill(0).show()//    2. 针对特定列填充sourceDF.na.fill(0, List("year", "month")).show()
      }**
      
  • 如何使用 SparkSQL 处理异常字符串 ?

    读取数据集, 这次读取的是最原始的那个 PM 数据集

    **val df = spark.read.option("header", value = true).csv("./dataset/BeijingPM20100101_20151231.csv")**
    

    使用函数直接转换非法的字符串

    **// 1. 替换// select name, age, case// when .. then...// elseimport org.apache.spark.sql.functions._ // 使用when 需要导入sourceDF.select('No as "id", 'year, 'month, 'day, 'hour, 'season,when('PM_Dongsi === "NA", Double.NaN) // 当 PM_Donsi 里的数据 等于 NA 时,变为 Double.NaN.otherwise('PM_Dongsi cast DoubleType) // 如果不是上面的条件,要将它的正常值转换成对应的Double类型.as("pm") // 起别名).show()// replace 注意:原类型和转换过后的类型,必须一致
    sourceDF.na.replace("PM_Dongsi", Map("NA" -> "NaN")).show()
    // sourceDF.na.replace("PM_Dongsi", Map("NA" -> "NaN", "NULL" -> "null")).show()

    在这里插入图片描述

    在这里插入图片描述

    使用 where 直接过滤

    df.select('No as "id", 'year, 'month, 'day, 'hour, 'season, 'PM_Dongsi).where('PM_Dongsi =!= "NA") // =!= 不等于.show()
    

    在这里插入图片描述

  • 所用文件

    [beijingpm_with_nan.rar]

    [BeijingPM20100101_20151231.rar](前面已上传,自己根据名称去资源下载)

  • 以上代码的前置条件

    // 1. 创建SparkSession对象
    val spark = SparkSession.builder().appName("column").master("local[6]").getOrCreate()import spark.implicits._case class Person(name: String, age: Int)
    
http://www.tj-hxxt.cn/news/83693.html

相关文章:

  • 郑州网站制作-中国互联外包推广服务
  • 房产网站的全景图怎么做怎样在百度上注册自己的店铺
  • 网站swf怎么做seo自动刷外链工具
  • 苏州做企业网站公司北京seo关键词排名优化软件
  • 最近几天的重大新闻事件安徽网站关键字优化
  • 青团智慧团建登录入口seo黑帽有哪些技术
  • 海外高延迟服务器做网站app推广30元一单平台
  • 怎么用dw做动态网站网络推广员招聘
  • 南昌做购物网站的公司关键词搜索
  • 北京哪家公司做网站好贺州seo
  • 成都html5网站建设百度如何推广广告
  • 公司的独立网站深圳抖音推广
  • 天津建设交通委网站sem竞价托管费用
  • 湘潭网站建设方案案例营销策划方案内容
  • 千博企业网站管理系统完整版 2014找竞价托管公司
  • 安庆做网站电话网站设计专业的公司
  • 个人网站怎么注册百度推广怎么推广
  • 设计网站名称google seo怎么优化
  • 网站200m虚拟主机能放多少东西有哪些网站可以免费发布广告
  • 建材做网销哪个网站好杭州百度首页排名
  • 国家卫生健康委员会官网电子注册苏州网站建设优化
  • 做网站电话沧州搭建网站工具
  • 怎么上传做 好的网站吗外贸网站模板
  • 瑞安公司做网站源码交易网站源码
  • 跟做竞价的网站友情链接有用吗微信广告推广价格表
  • 网站数据库文件名南宁网站seo外包
  • 百度公司网站排名怎么做广州百度seo代理
  • 西安专业网站建设价格福州seo视频
  • 绵阳科技网站建设网络软文
  • 手机百度网页版郑州seo排名工具