当前位置: 首页 > news >正文

石家庄哪里有做外贸网站的公司博客

石家庄哪里有做外贸网站的公司,博客,ps为什么做不了视频网站,自己做网站送外卖目录 一、前期准备 1.1 标签数字化 1.2 加载数据 1.3 配置数据 二、其他 2.1 损失函数 categorical_crossentropy 2.2 plt.legend(loc ) 2.3 history.history 活动地址:CSDN21天学习挑战赛 学习:深度学习100例-卷积神经网络(CNN&…

目录

一、前期准备

1.1 标签数字化

1.2 加载数据

1.3 配置数据

二、其他

2.1 损失函数 categorical_crossentropy

2.2 plt.legend(loc=' ')

2.3 history.history


 活动地址:CSDN21天学习挑战赛

学习:深度学习100例-卷积神经网络(CNN)识别验证码 | 第12天_K同学啊的博客-CSDN博客

一、前期准备

1.1 标签数字化

number   = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
char_set       = number + alphabet
char_set_len   = len(char_set)
label_name_len = len(all_label_names[0])# 将字符串数字化
def text2vec(text):vector = np.zeros([label_name_len, char_set_len])for i, c in enumerate(text):idx = char_set.index(c)vector[i][idx] = 1.0return vectorall_labels = [text2vec(i) for i in all_label_names]

text 为 all_label_names 即标签名称的值,假设标签是 677g3,则一次输入进函数 text2vec:6、7、7、g、3

enumerate(text) 返回了text的 索引和值 给 i 和 c ,idx 为在 char_set 里找到的 c的索引值,所以新构建了一个全0 的二维数组,行数为标签的长度,列数为字符集合 char_set 的长度,转化结果即为,每i行的对应标签名称的第i个值对应的索引为1,其余为0

1.2 加载数据

AUTOTUNE = tf.data.experimental.AUTOTUNEpath_ds  = tf.data.Dataset.from_tensor_slices(all_image_paths)
image_ds = path_ds.map(load_and_preprocess_image, num_parallel_calls=AUTOTUNE)
label_ds = tf.data.Dataset.from_tensor_slices(all_labels)image_label_ds = tf.data.Dataset.zip((image_ds, label_ds))
image_label_ds

tf.data.Dataset.from_tensor_slices_方如一的博客-CSDN博客

与 prefetch()使用类似,Dataset.map() 也可以利用多 GPU 资源,并行化地对数据项进行变换,从而提高效率。以前节的 MNIST 数据集为例,假设用于训练的计算机具有 2 核的 CPU,我们希望充分利用多核心的优势对数据进行并行化变换(比如 前节 的旋转 90 度函数 rot90 ),可以使用以下代码:
如代码:

1mnist_dataset = mnist_dataset.map(map_func=rot90, num_parallel_calls=2)

参考:TensorFlow 2.0 常用模块3:tf.data 流水线加速_zk_one的博客-CSDN博客

1.3 配置数据

prefetch() 功能详细介绍:CPU正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU处于空闲状态。因此,训练所用的时间是CPU预处理时间和加速器训练时间的总和。prefetch() 将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第N个训练步时,CPU正在准备第N+1步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch() , CPU和GPU/TPU在大部分时间都处于空闲状态:

BATCH_SIZE = 16train_ds = train_ds.batch(BATCH_SIZE)
train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)val_ds = val_ds.batch(BATCH_SIZE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)
val_ds

二、其他

2.1 损失函数 categorical_crossentropy

model.compile(optimizer="adam",loss='categorical_crossentropy',metrics=['accuracy'])

根据公式我们可以发现,因为yi,要么是0,要么是1。而当yi等于0时,结果就是0,当且仅当yi等于1时,才会有结果。也就是说categorical_crossentropy只专注与一个结果,因而它一般配合softmax做单标签分类。

详情参考:损失函数:categorical_crossentropy_Stealers的博客-CSDN博客_categorical_crossentropy

2.2 plt.legend(loc=' ')

plt.legend(loc=' '):设置图例的位置

plt.plot(),plt.scatter(),plt.legend函数的用法介绍_Sunny.T的博客-CSDN博客_plt.legend

plt.legend(loc='lower right')
plt.legend(loc='upper right')

2.3 history.history

plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])

history:历史查看命令,可用来绘制训练过程中的损失和准确率

http://www.tj-hxxt.cn/news/80835.html

相关文章:

  • 网站公安备案号app推广是什么工作
  • 建设网站e护航下载黄页网络的推广网站有哪些类型
  • 汶上1500元网站建设5000元网站seo推广
  • 网站-网站建设定制安徽建站
  • 企业网站建设排名资讯百度快照不更新怎么办
  • 华为荣耀手机商城官方网站快速排名点击工具
  • 怎么看网站的建站公司是哪个百度信息流推广教程
  • 做软件下载网站有哪些百度提升优化
  • 日本平面设计网站推荐网购网站十大排名
  • 东莞网站设计案例刷推广链接人数的软件
  • 网站建设的销售怎么做世界军事新闻
  • 公司备案 网站主办者名称百度地图打车客服人工电话
  • 校园网站建设的重要性云seo关键词排名优化软件
  • 做网站首页的图片素材免费域名申请网站大全
  • 公安局 网站备案查询系统竞价推广运营
  • 搭建小程序公司宁波关键词优化企业网站建设
  • 做网站的回扣seo网站管理招聘
  • 浙江网站设计公司如何制作自己的链接
  • 企业集团网站建设方案论文班级优化大师下载安装
  • 做网站每年交服务费竞价代运营外包公司
  • web系统开发是什么seo指什么
  • 怎样做机械租赁的网站网络营销是什么课程
  • 西安网站制作流程百度竞价推广开户价格
  • 潍坊专业建站网站和网页的区别
  • 企业网站建设ppt网站百度关键词seo排名优化
  • 怎么学做淘宝免费视频网站代哥seo
  • 环保设备网站建设模板网络广告图片
  • 东莞做网站企业微商怎么引流被加精准粉
  • 加强人社网站建设百度搜索引擎算法
  • 响应式网页技术郑州seo排名哪有