当前位置: 首页 > news >正文

常用知名购物网站十大收益最好的自媒体平台

常用知名购物网站,十大收益最好的自媒体平台,推广单页网站免费制作,网站论坛怎么做 csdnyolo过时了?传统的yolo算法在小目标检测方面总是不行,最新算法DEIM爆锤yolo,已经替yolo解决。 一、创新点 ​ 这个算法名为DEIM,全称是DETR with Improved Matching for Fast Convergence,其主要创新点在于提出了一…

yolo过时了?传统的yolo算法在小目标检测方面总是不行,最新算法DEIM爆锤yolo,已经替yolo解决。
在这里插入图片描述

一、创新点

​ 这个算法名为DEIM,全称是DETR with Improved Matching for Fast Convergence,其主要创新点在于提出了一种新的训练框架,用于加速基于Transformer架构(如DETR)的实时目标检测模型的收敛。具体来说,DEIM的创新点包括:

  1. Dense O2O Matching(密集一对一匹配)

    • DEIM采用了一种新的匹配策略,称为Dense O2O(密集一对一匹配),这种策略通过在每个训练图像中增加更多的目标来增加正样本的数量,从而提供更密集的监督信号,加速模型的收敛。
    • 使用标准的图像增强技术(如mosaic和mixup)来增加每个图像中的目标数量,同时保持一对一匹配框架不变。
  2. Matchability-Aware Loss (MAL)(匹配能力感知损失)

    • 为了解决Dense O2O匹配引入的大量低质量匹配问题,DEIM提出了一种新的损失函数MAL,该函数根据匹配质量(通过IoU和分类置信度的结合)来调整惩罚,优化不同质量水平的匹配。

    • MAL对于高置信度的低质量匹配给予了更大的惩罚,提高了有限正样本的效用,并简化了数学公式。

MAL的公式如下:

M A L ( p , q , y ) = { − q γ log ⁡ ( p ) + ( 1 − q γ ) log ⁡ ( 1 − p ) if  y = 1 − p γ log ⁡ ( 1 − p ) if  y = 0 MAL(p, q, y) = \begin{cases} -q^\gamma \log(p) + (1 - q^\gamma) \log(1 - p) & \text{if } y = 1 \\ -p^\gamma \log(1 - p) & \text{if } y = 0 \end{cases} MAL(p,q,y)={qγlog(p)+(1qγ)log(1p)pγlog(1p)if y=1if y=0
其中:

  • p表示预测框属于前景类别的概率。
  • q表示预测框与真实框之间的IoU值。
  • y是真实标签,1表示前景,0表示背景。
  • γ \gamma γ 是一个参数,用于平衡易例和难例之间的关注程度。

二、提升点

与YOLOv11相比,DEIM在以下几个指标上取得了提升:

  1. 收敛速度

    • DEIM显著加快了RT-DETRv2和D-FINE模型的收敛速度,使得这些模型在较少的训练周期内就能达到与YOLOv11相当的性能。
  2. 平均精度(AP)

    • 在COCO数据集上,DEIM与RT-DETRv2结合时,在一天的训练后(使用NVIDIA 4090 GPU)达到了53.2%的AP,显示出在精度上的显著提升。
  3. 实时性能

    • DEIM训练的实时模型在NVIDIA T4 GPU上达到了54.7%和56.5%的AP,分别在124和78 FPS的帧率下,无需额外数据,这表明DEIM在实时目标检测任务中具有更好的性能。
  4. 小目标检测

    • DEIM在小目标检测方面也显示出了优势,尽管与某些YOLO模型相比在小目标AP上略有下降,但总体AP更高,显示出DEIM在整体性能上的提升。

​ 总的来说,DEIM通过改进匹配策略和损失函数,提高了模型的训练效率和检测性能,特别是在实时目标检测领域,DEIM为提高目标检测的速度和准确性提供了一种有效的解决方案。

三、往期回顾

​ yolo入门教程:《吐血录制,yolo11猫狗实时检测实战项目,从零开始写yolov11代码》,视频全程25分钟。

在这里插入图片描述

(1)yolo11猫狗实时检测实战项目,从零开始写yolov11代码

(2)从零开始学yolo之yolov1的技术原理

(3)YOLOv1训练过程,新手入门

(4)YOLOv2和yolov1的差异

(5)YOLOv3和yolov1、yolov2之间的差异

(6)YOLOv4算法基本原理以及和YOLOv3 的差异

(7)YOLOv5算法基本原理大揭秘!

(8)YOLOv6算法基本原理

(9)YOLOv7算法基本原理

(10)YOLOv8算法基本原理

(11)YOLOv9算法基本原理

(12)YOLOv10算法基本原理

(13)10张结构图,深入理解YOLOv11算法各个模块

高清视频,3分钟揭秘神经网络技术原理

在这里插入图片描述
Transfermer的Q、K、V设计的底层逻辑

http://www.tj-hxxt.cn/news/80367.html

相关文章:

  • 自助提卡网站怎么做推广普通话海报
  • 页游赚钱北京seo百科
  • 韶关网站开发优化大师的三大功能
  • 杭州网站建设公司官网搜索引擎整合营销
  • wordpress com org搜seo
  • 房城乡建设部网站今日头条官网登录入口
  • 建设一个网站需要学习什么seo网站排名优化案例
  • 怎样做网站测试拼多多网店代运营要多少费用
  • linux做网站的好处seo标签怎么优化
  • 如何做网站建设怎么开网站
  • 重庆网站推广方法大全semantics
  • 飞言情做最好的言情网站app地推网
  • 郑州汉狮做网站网络公司西安百度框架户
  • 有空间怎么做网站公司怎么建立自己的网站
  • asp.net web网站模板下载2345网址导航是病毒吗
  • 定制服装百度seo公司整站优化
  • 武安网站制作重庆官网seo分析
  • 湛江论坛建站模板不受限制的浏览器
  • 东莞网站建设方案济南网站建设哪家便宜
  • 中国互联网协会官方网站写一篇软文多少钱
  • 网站开发属于哪个板块的惠州百度seo
  • 建设单位企业锁登陆网站今日最新抗疫数据
  • wordpress 放弃站长工具seo综合查询腾讯
  • 小公司如何做网站隔离seo是什么平台
  • 建设网站北京市百度手机应用市场
  • 怎样在国外网站上做宣传公司做网络推广怎么做
  • 辽宁做网站和优化哪家好中国最好的营销策划公司
  • mini主机做网站服务器关键词搜索推广
  • 大良网站建设基本流程做网络推广需要多少钱
  • 网站建设基本流程视频品牌管理