当前位置: 首页 > news >正文

媒体门户网站建设方案今日要闻10条

媒体门户网站建设方案,今日要闻10条,成都网站建设外包公司,做商城微信网站在 PyTorch 中,你可以通过为优化器传递不同的学习率来针对不同的可调参数分配不同的学习率。这通常通过向优化器传递一个字典列表来实现,其中每个字典指定特定参数组的学习率。下面是一个示例代码,展示了如何实现这一点: import …

在 PyTorch 中,你可以通过为优化器传递不同的学习率来针对不同的可调参数分配不同的学习率。这通常通过向优化器传递一个字典列表来实现,其中每个字典指定特定参数组的学习率。下面是一个示例代码,展示了如何实现这一点:

import torch
import torch.optim as optim# 假设我们有两个模型参数:param1 和 param2
param1 = torch.nn.Parameter(torch.randn(2, 3))
param2 = torch.nn.Parameter(torch.randn(3, 4))# 将这些参数分配给不同的学习率
optimizer = optim.SGD([{'params': param1, 'lr': 0.01},{'params': param2, 'lr': 0.001}
], lr=0.01, momentum=0.9)# 模拟一次训练步骤
loss = (param1.sum() + param2.sum()) ** 2
loss.backward()
optimizer.step()# 打印更新后的参数值
print(param1)
print(param2)

对于余弦退火算法中,对于可调的学习率,pytorch对不同的可调参数,分配不同的学习率权重

import torch
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR# 假设我们有两个模型参数:param1 和 param2
param1 = torch.nn.Parameter(torch.randn(2, 3))
param2 = torch.nn.Parameter(torch.randn(3, 4))# 为每个参数组分配不同的学习率
optimizer = optim.SGD([{'params': param1, 'lr': 0.01},{'params': param2, 'lr': 0.001}
], lr=0.01, momentum=0.9)# 为整个优化器设置余弦退火调度器
scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=0.0001)# 模拟一个训练周期
for epoch in range(10):# 执行优化步骤loss = (param1.sum() + param2.sum()) ** 2loss.backward()optimizer.step()# 更新学习率scheduler.step()# 打印当前学习率for i, param_group in enumerate(optimizer.param_groups):print(f'Epoch {epoch+1}, Param Group {i+1}: Learning Rate = {param_group["lr"]}')

两个参数先后优化,第一阶段主要优化param1,后一阶段主要优化param2

方法1:分阶段调整优化器的参数组
你可以在第一阶段只优化 param1,然后在第二阶段只优化 param2。这可以通过在不同阶段将 param1 或 param2 从优化器中移除或冻结(将学习率设置为 0)来实现。

import torch
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR# 假设我们有两个模型参数:param1 和 param2
param1 = torch.nn.Parameter(torch.randn(2, 3))
param2 = torch.nn.Parameter(torch.randn(3, 4))# 第一阶段:仅优化 param1
optimizer1 = optim.SGD([{'params': param1, 'lr': 0.01}], momentum=0.9)
scheduler1 = CosineAnnealingLR(optimizer1, T_max=5, eta_min=0.0001)# 第二阶段:仅优化 param2
optimizer2 = optim.SGD([{'params': param2, 'lr': 0.001}], momentum=0.9)
scheduler2 = CosineAnnealingLR(optimizer2, T_max=5, eta_min=0.0001)# 模拟训练
for epoch in range(10):# 第一阶段:前5个epoch优化param1if epoch < 5:optimizer1.zero_grad()loss = (param1.sum()) ** 2loss.backward()optimizer1.step()scheduler1.step()print(f'Epoch {epoch+1}: Optimizing param1, LR = {scheduler1.get_last_lr()}')# 第二阶段:后5个epoch优化param2else:optimizer2.zero_grad()loss = (param2.sum()) ** 2loss.backward()optimizer2.step()scheduler2.step()print(f'Epoch {epoch+1}: Optimizing param2, LR = {scheduler2.get_last_lr()}')

方法2:同时设置不同的学习率,但不同阶段侧重不同的参数
在这个方法中,你可以在第一阶段为 param1 设置较大的学习率,param2 设置为非常小的学习率(几乎不变)。然后在第二阶段反过来。

import torch
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR# 假设我们有两个模型参数:param1 和 param2
param1 = torch.nn.Parameter(torch.randn(2, 3))
param2 = torch.nn.Parameter(torch.randn(3, 4))# 同时优化param1和param2,但不同阶段有不同的学习率
optimizer = optim.SGD([{'params': param1, 'lr': 0.01},  # param1初始学习率较大{'params': param2, 'lr': 0.0001}  # param2初始学习率较小
], momentum=0.9)scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=0.00001)# 模拟训练
for epoch in range(10):optimizer.zero_grad()# 计算损失loss = (param1.sum() + param2.sum()) ** 2loss.backward()optimizer.step()scheduler.step()# 不同阶段调整学习率if epoch == 5:optimizer.param_groups[0]['lr'] = 0.0001  # param1 学习率降低optimizer.param_groups[1]['lr'] = 0.01    # param2 学习率增大# 打印学习率print(f'Epoch {epoch+1}: LR for param1 = {optimizer.param_groups[0]["lr"]}, LR for param2 = {optimizer.param_groups[1]["lr"]}')
http://www.tj-hxxt.cn/news/79909.html

相关文章:

  • 连云港 网站设计百度seo优化方法
  • 国际交友网站做英文客服seo 首页
  • 深圳做网站google推广灰色推广引流联系方式
  • 山西建站便宜西安官网seo
  • 做游戏平面设计好的素材网站有哪些网络舆情监测专业
  • 武汉企业建站程序新乡网站推广
  • 乌鲁木齐市建设委员会网站windows优化大师怎么卸载
  • 平面设计公司属于什么行业太原seo排名优化软件
  • 苏州吴中区做网站公司外贸网站seo推广教程
  • 广西城市建设学校官方网站海南网站制作
  • 在线设计平台效果图石家庄网站建设seo
  • 山东网站策划怎么做郑州seo服务公司
  • 网站页脚怎么做能好看点如何创建一个app平台
  • 做淘宝客网站性质推文关键词生成器
  • 成功的网络营销案例郑州网站seo外包公司
  • drupal做新闻网站网站推广怎么弄
  • 南通模板建站多少钱百度网站app
  • 提供小企业网站建设seo优化有哪些
  • 广东省建设工程交易中心seo优化技术培训中心
  • 凡科互动网站登录入口软文推广做的比较好的推广平台
  • 成都便宜做网站的怀来网站seo
  • 移动网站建设学习网站流量统计软件
  • 无锡怎么做网站推广免费获客软件
  • 做准的算命网站seo工具大全
  • 58同城类似的网站怎么做网络营销课程培训课程
  • 海南做房地产网站的网络公司太原关键词优化报价
  • 临沂网站设计seo蜘蛛池
  • 自助游网站开发分析报告外链网盘
  • 怎样申请网站空间品牌策划方案模板
  • 已有网站开发app全网营销推广案例