当前位置: 首页 > news >正文

长春建站网站模板太原网站推广公司

长春建站网站模板,太原网站推广公司,别人用我的备案信息做网站,跨平台网站制作系列文章目录 Python 算法学习:打家劫舍问题 文章目录 系列文章目录一、算法需求二、解题思路三、具体方法源码方法1:动态规划(自底向上)方法2:动态规划(自顶向下)方法3:优化的动态…

系列文章目录

Python 算法学习:打家劫舍问题


文章目录

  • 系列文章目录
  • 一、算法需求
  • 二、解题思路
  • 三、具体方法+源码
    • 方法1:动态规划(自底向上)
    • 方法2:动态规划(自顶向下)
    • 方法3:优化的动态规划
    • 方法4:递归
  • 总结


一、算法需求

“打家劫舍”问题是一个经典的动态规划问题,通常用来描述一个小偷在一条街上偷窃房屋的场景。每间房屋都有一定数量的现金,小偷需要决定偷哪些房屋以最大化他的收益。但是,小偷面临一个限制:如果两间相邻的房屋在同一晚上被偷,那么防盗系统会触发报警。因此,小偷不能偷窃相邻的房屋。


二、解题思路

动态规划: 定义一个数组 dp,其中 dp[i] 表示到第 i 间房屋为止能偷到的最大金额。状态转移方程是 dp[i] = max(dp[i-1], dp[i-2] + nums[i]),表示可以选择偷当前房子(前提是不偷前一个房子)或者不偷当前房子(延续前一个房子的决策)。

贪心算法: 虽然不总是最优,但可以作为一种尝试。在每一步选择当前能获得的最大金额,而不考虑未来的房子。

递归: 通过递归函数模拟决策过程,考虑偷或不偷当前房子,并取两种选择中的最大值。

优化空间: 使用两个变量代替数组,减少空间复杂度。


三、具体方法+源码

方法1:动态规划(自底向上)

状态定义:dp[i] 表示到第 i 个房子为止能偷到的最大金额。

计算过程:

dp[0] = 2(只考虑第一个房子)
dp[1] = max(2, 7) = 7(考虑第一个和第二个房子)
dp[2] = max(7, 2+9) = 9(考虑第二个和第三个房子)
dp[3] = max(9, 7+3) = 10(考虑第三个和第四个房子)
dp[4] = max(10, 9+1) = 12(考虑第四个和第五个房子)
结果:12

代码如下:

def rob1(nums):if not nums:return 0if len(nums) == 1:return nums[0]dp = [0] * len(nums)dp[0] = nums[0]dp[1] = max(nums[0], nums[1])for i in range(2, len(nums)):dp[i] = max(dp[i-1], dp[i-2] + nums[i])return dp[-1]# 测试
nums = [2, 7, 9, 3, 1]
print("最高金额:", rob1(nums))

方法2:动态规划(自顶向下)

计算过程:

从 rob(0) 开始
rob(1) = max(rob(2), rob(3)) = max(7, 9) = 9
rob(2) = max(rob(3), rob(4) + 2) = max(9, 10) = 10
rob(3) = max(rob(4), rob(5) + 3) = max(9, 12) = 12
rob(4) = max(rob(5), rob(6) + 1) = max(7, 12) = 12
结果:12

代码如下:

def rob2(nums):memo = {}def rob(i):if i >= len(nums):return 0if i in memo:return memo[i]memo[i] = max(rob(i+1), nums[i] + rob(i+2))return memo[i]return rob(0)# 测试
nums = [2, 7, 9, 3, 1]
print("最高金额:", rob2(nums))

方法3:优化的动态规划

计算过程:

prev = 2, curr = 7
prev = 7, curr = 9
prev = 9, curr = 10
prev = 10, curr = 12
结果:12

代码如下:

def rob3(nums):if not nums:return 0if len(nums) == 1:return nums[0]prev, curr = 0, 0for num in nums:prev, curr = curr, max(prev + num, curr)return curr# 测试
nums = [2, 7, 9, 3, 1]
print("最高金额:", rob3(nums))

方法4:递归

计算过程:

helper(0) = max(helper(1), helper(2) + 2) = max(7, 9) = 9
helper(1) = max(helper(2), helper(3) + 7) = max(9, 10) = 10
helper(2) = max(helper(3), helper(4) + 9) = max(10, 12) = 12
helper(3) = max(helper(4), helper(5) + 3) = max(9, 12) = 12
helper(4) = max(helper(5), 1) = 12
结果:12

代码如下:

def rob4(nums):def helper(i):if i == len(nums):return 0if i == len(nums) - 1:return nums[i]return max(helper(i+1), nums[i] + helper(i+2))return helper(0)# 测试
nums = [2, 7, 9, 3, 1]
print("最高金额:", rob4(nums))

总结

这个问题在算法学习中非常重要,因为它展示了如何使用动态规划解决具有重叠子问题和最优子结构特性的问题。它也常用于面试中,考察候选人对动态规划的理解和应用能力。

这个问题的变种也很多,比如考虑环形街道的情况,或者房屋之间的防盗系统有不同的触发条件等。

http://www.tj-hxxt.cn/news/78555.html

相关文章:

  • 市网站建设搜索引擎调词工具
  • 怎么做新网站才能被百度收录广告多的网站
  • 物流公司在哪做网站学做电商需要多少钱
  • 广州php网站建设品牌策划公司
  • 龙岩做网站公司济宁百度推广公司
  • 白品网站建设北京网站建设制作开发
  • 箱包网站模板太原网站seo
  • 潮州网站设计百度关键词排名查询接口
  • 有哪些营销型网站媒体平台
  • 不用代码做网站百度竞价排名公司
  • 网站建设中静态页面模板百度信息流
  • access做网站数据库公司做网站需要多少钱
  • 崇左网站建设seo具体怎么优化
  • 怎样做班级网站成都网站建设方案推广
  • 锦州做网站的个人联合早报 即时消息
  • 网站的设计方法有哪些营销型网站建设流程
  • 做外贸网站需要注意什么广告竞价
  • 日本软银集团董事长长沙seo网络营销推广
  • wordpress hhvm关键词优化百家号
  • 佛山网站建设网络公司济南seo外包公司
  • 网站建设会员管理系统方案今日早间新闻
  • 吉林电商网站建设报价珠海优化seo
  • 大兴安岭网站建设seo兼职招聘
  • 做外贸网站能用虚拟主机吗百度推广开户需要多少钱
  • 做外贸什么网站网站制作策划
  • 网站建设公司怎么做营销推广ppt
  • 柯桥网站建设百度竞价官网
  • 怎么看一个网站是不是外包做的网络推广网站推广
  • 东莞网站建设php方案网络竞价推广托管公司
  • 手机网站素材网seo与sem的区别与联系