当前位置: 首页 > news >正文

黑河网站建设公司编程培训班学费一般多少钱

黑河网站建设公司,编程培训班学费一般多少钱,企业做网站哪家好,贷款做网站是不是总感觉很熟悉? 在之前第5,7,8篇文章中,我们都曾经用到过与它相关的参数,而对于早就有着实操经验的同学们,想必见到的更多。这篇文章将从示例到数学原理和代码带你进行理解。 Beam Search 对应的中文翻…

是不是总感觉很熟悉?
在之前第5,7,8篇文章中,我们都曾经用到过与它相关的参数,而对于早就有着实操经验的同学们,想必见到的更多。这篇文章将从示例到数学原理和代码带你进行理解。

Beam Search 对应的中文翻译为“集束搜索”或“束搜索”。你可以将其当作是贪心算法的拓展,其实是很简单的概念:贪心算法每次只选择最好的,而 Beam Search 会在多个候选中进行选择。通过这篇文章,你将了解到:

  • Beam Width(束宽) 的实际作用,常对应于参数名 num_beams
  • 所有候选序列生成结束标记 的含义,常对应于参数名 early_stopping
  • Beam Search 的基本原理和工作机制

强烈建议访问:Beam Search Visualizer,这是一个非常 Amazing 的交互式项目,在即将完成这个文章攥写的时候我通过官方文档发现了它,让理论与实际搭上了桥。
计划后续补上数学和与其他一些算法的比较。

Beam Search 的基本概念

Beam Search 是一种宽度优先搜索算法,通过保留多个候选序列(即“束”)来探索可能的输出空间。不同于贪心搜索(Greedy Search)每次只选择当前最优的一个候选序列,Beam Search 可以同时保留多个(由束宽 k k k 决定),从而减少陷入局部最优解的风险。

Beam Search 的工作原理

Beam Search 的核心思想是在每一步生成过程中,保留束宽 k k k 个最有可能的候选序列,而不是仅保留一个最优序列(这种是贪心算法,也就是说束宽 k k k 为 1 的时候 Beam Search 就是 Greedy Search)。以下是 Beam Search 的基本步骤:

  1. 初始化:从一个初始序列(通常为空或特殊起始标记)开始,设定束宽 k k k,初始化候选序列集 B 0 = { start } B_0 = \{ \text{start} \} B0={start}
  2. 迭代生成:对于当前所有候选序列 B t − 1 B_{t-1} Bt1,扩展一个新的词汇或符号,生成所有可能的下一个词汇组合,并计算每个序列的概率。
  3. 选择顶束:从所有扩展的候选序列中,选择得分最高的 k k k 个序列,作为下一步的候选序列 B t B_t Bt
  4. 终止条件:当所有候选序列都生成了结束标记(如 <eos>)或达到设定的最大长度 T T T 时,停止生成。
  5. 选择最终序列:从最终的候选序列集中,选择得分最高的序列作为输出。

:以GPT为例,扩展实际对应于去获取 tokens 的概率。

举个例子

  1. 初始化

    • 束宽 ( k k k): 2
    • 当前候选集 ( B 0 B_0 B0): { (空) } \{\text{(空)}\} {(空)}
    • 词汇表 { A , B , C , ‘<eos>‘ } \{A, B, C, \text{`<eos>`}\} {A,B,C,‘<eos>‘}
    • 扩展(生成所有可能的下一个词汇):
      扩展结果概率
      A 0.4 \textbf{0.4} 0.4
      B 0.3 \textbf{0.3} 0.3
      C 0.2 0.2 0.2
      <eos> 0.1 0.1 0.1
    • 选择顶束 ( k = 2 k=2 k=2):
      • A A A 0.4 0.4 0.4
      • B B B 0.3 0.3 0.3
    • 新的候选集 ( B 1 B_1 B1): { A ( 0.4 ) , B ( 0.3 ) } \{A (0.4), B (0.3)\} {A(0.4),B(0.3)}
  2. 扩展 A A A B B B

    • 扩展 A A A

      • 生成概率: { A : 0.3 , B : 0.1 , C : 0.4 , ‘<eos>‘ : 0.2 } \{A: 0.3, B: 0.1, C: 0.4, \text{`<eos>`}: 0.2\} {A:0.3,B:0.1,C:0.4,‘<eos>‘:0.2}
      扩展结果概率计算概率
      A A AA AA 0.4 × 0.3 0.4 \times 0.3 0.4×0.3 0.12 \textbf{0.12} 0.12
      A B AB AB 0.4 × 0.1 0.4 \times 0.1 0.4×0.1 0.04 0.04 0.04
      A C AC AC 0.4 × 0.4 0.4 \times 0.4 0.4×0.4 0.16 \textbf{0.16} 0.16
      A <eos> A\text{<eos>} A<eos> 0.4 × 0.2 0.4 \times 0.2 0.4×0.2 0.08 0.08 0.08
    • 扩展 B B B

      • 生成概率: { A : 0.1 , B : 0.1 , C : 0.3 , ‘<eos>‘ : 0.5 } \{A: 0.1, B: 0.1, C: 0.3, \text{`<eos>`}: 0.5\} {A:0.1,B:0.1,C:0.3,‘<eos>‘:0.5}
      扩展结果概率计算概率
      B A BA BA 0.3 × 0.1 0.3 \times 0.1 0.3×0.1 0.03 0.03 0.03
      B B BB BB 0.3 × 0.1 0.3 \times 0.1 0.3×0.1 0.03 0.03 0.03
      B C BC BC 0.3 × 0.3 0.3 \times 0.3 0.3×0.3 0.09 \textbf{0.09} 0.09
      B <eos> B\text{<eos>} B<eos> 0.3 × 0.5 0.3 \times 0.5 0.3×0.5 0.15 \textbf{0.15} 0.15
    • 所有扩展序列及其概率

      序列概率
      A C AC AC 0.16 \textbf{0.16} 0.16
      A A AA AA 0.12 0.12 0.12
      B <eos> B\text{<eos>} B<eos> 0.15 \textbf{0.15} 0.15
      B C BC BC 0.09 0.09 0.09
      A <eos> A\text{<eos>} A<eos> 0.08 0.08 0.08
      A B AB AB 0.04 0.04 0.04
      B A BA BA 0.03 0.03 0.03
      B B BB BB 0.03 0.03 0.03
    • 选择顶束 ( k = 2 k=2 k=2):

      • A C AC AC 0.16 0.16 0.16
      • B <eos> B\text{<eos>} B<eos> 0.15 0.15 0.15
    • 新的候选集 ( B 2 B_2 B2): { A C ( 0.16 ) , B <eos> ( 0.15 ) } \{AC (0.16), B\text{<eos>} (0.15)\} {AC(0.16),B<eos>(0.15)}

  3. 仅扩展 A C AC AC

    • 生成概率: { A : 0.1 , B : 0.2 , C : 0.5 , ‘<eos>‘ : 0.2 } \{A: 0.1, B: 0.2, C: 0.5, \text{`<eos>`}: 0.2\} {A:0.1,B:0.2,C:0.5,‘<eos>‘:0.2}
    扩展结果概率计算概率
    A C A ACA ACA 0.16 × 0.1 0.16 \times 0.1 0.16×0.1 0.016 0.016 0.016
    A C B ACB ACB 0.16 × 0.2 0.16 \times 0.2 0.16×0.2 0.032 0.032 0.032
    A C C ACC ACC 0.16 × 0.5 0.16 \times 0.5 0.16×0.5 0.080 0.080 0.080
    A C <eos> AC\text{<eos>} AC<eos> 0.16 × 0.2 0.16 \times 0.2 0.16×0.2 0.032 0.032 0.032
    • 由于 B <eos> B\text{<eos>} B<eos> 已完成,我们选择扩展结果中的顶束:
      • A C C ACC ACC 0.064 0.064 0.064
      • 以某种规则选择 A C B ACB ACB A C <eos> AC\text{<eos>} AC<eos> 0.032 0.032 0.032
    • 新的候选集 ( B 3 B_3 B3): { A C C ( 0.064 ) , A C B ( 0.032 ) } \{ACC (0.064), ACB (0.032)\} {ACC(0.064),ACB(0.032)}
  4. 后续步骤

    • 继续扩展:重复上述过程,直到所有候选序列都生成了 <eos> 或达到设定的最大长度。

过程演示

现在是你访问它的最好时机:Beam Search Visualizer

处理 <eos> 的逻辑

在每一步生成过程中,如果某个序列生成了 <eos>,则将其标记为完成,不再进行扩展。以下是处理 <eos> 的示例:

  • 假设在某一步,序列 A C B ACB ACB 扩展出 A C B <eos> ACB\text{<eos>} ACB<eos> 0.032 × 1 = 0.032 0.032 \times 1 = 0.032 0.032×1=0.032),则:
    • A C B <eos> ACB\text{<eos>} ACB<eos> 保留在最终候选集,但不再扩展。
    • Beam Search 继续扩展其他未完成的序列,直到所有序列完成或达到最大长度。

问题如果有一个序列被标记为完成(生成了 <eos>),在下一个扩展步骤中,Beam Search 应该扩展多少个候选序列?

答:束宽 k k k

示例图(k=3):

你可以在下图中看到,即便有一个序列生成了 <eos>,下一个扩展步骤中还是会扩展 k=3 个候选序列。

image-20240915235014101

实际应用中的 Beam Search

在机器翻译,文本生成,语音转识别等生成式模型领域,你都能看见Beam Search,它被广泛地应用。

代码示例

使用 Hugging Face Transformers 库的简单示例:

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch# 指定模型名称
model_name = "distilgpt2"# 加载分词器和模型
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)# 移动模型到设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)# 设置模型为评估模式
model.eval()# 输入文本
input_text = "Hello GPT"# 编码输入文本
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)# 生成文本,使用 Beam Search
beam_width = 5
with torch.no_grad():outputs = model.generate(inputs,max_length=50,num_beams=beam_width,  # 你可以看到 beam_width 对应的参数名为 num_beamsno_repeat_ngram_size=2,early_stopping=True  # 开启 early_stopping,当所有候选序列生成<eos>停止)# 解码生成的文本
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("生成的文本:")
print(generated_text)

输出

生成的文本:
Hello GPT.This article was originally published on The Conversation. Read the original article.

对比不同束宽的输出

# 输入文本
input_text = "Hello GPT"# 编码输入文本
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)# 设置束宽不同的生成策略
beam_widths = [1, 3, 5]  # 使用不同的束宽# 生成并打印结果
for beam_width in beam_widths:with torch.no_grad():outputs = model.generate(inputs,max_length=50,num_beams=beam_width,  no_repeat_ngram_size=2,early_stopping=True,)generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)print(f"束宽 {beam_width} 的生成结果:")print(generated_text)print('-' * 50)
束宽 1 的生成结果:
Hello GPT is a free and open source software project that aims to provide a platform for developers to build and use GPGP-based GPSP based GPCs. GPP is an open-source software development platform that is designed to
--------------------------------------------------
束宽 3 的生成结果:
Hello GPT.This article is part of a series of articles on the topic, and will be updated as more information becomes available.
--------------------------------------------------
束宽 5 的生成结果:
Hello GPT.This article was originally published on The Conversation. Read the original article.
--------------------------------------------------

参考链接

  • Beam-search decoding
  • Beam Search Visualizer
http://www.tj-hxxt.cn/news/7804.html

相关文章:

  • 临漳seo整站排名河南整站关键词排名优化软件
  • 公司招聘网站 哪个部门做seo职业培训学校
  • 山西建设官方网站百度一键优化
  • 品牌网站开发公司腾讯企业邮箱登录入口
  • 哪个网站做初中作业学生个人网页制作成品代码
  • 上海自聊自做网站seo外包公司费用
  • 网站建设合同下载推广策略怎么写
  • h5网站开发软件深圳网络推广培训学校
  • 公司建设网站有什么好处交友平台
  • 怎么做网站收录网站关键词在线优化
  • 民宿网站建设百度客服人工电话24小时
  • 电商网站开发设计方案衡阳百度推广公司
  • 网站制作书籍推荐seo搜索引擎优化5
  • 门户网站建设运营正规的关键词优化软件
  • 学而思的网站哪里做的企业网站seo服务
  • 怎么找到域名做的那个网站网站注册查询
  • 大型多媒体网站建设工具网站性能优化的方法有哪些
  • wordpress架站教程网站关键词优化系统
  • 工业信息化部网站备案系统百度竞价运营
  • 什么网站做首页电脑优化大师
  • 动态网站订单怎么做热搜词排行榜
  • 大气简约企业网站模板免费下载进行优化
  • 网站费用估算网站优化排名软件推广
  • 建设网站需要了解些什么问题石家庄seo网络推广
  • 网站建设众筹西安网站建设优化
  • 内蒙古建设监理协会网站合肥seo软件
  • 网站建设岗位所需技能自己怎么建网站
  • 华久网站建设网红推广团队去哪里找
  • 向雅虎提交网站四种营销模式
  • 做公司做网站有用吗360竞价推广登录入口