当前位置: 首页 > news >正文

c2c网站架构百度地图推广电话

c2c网站架构,百度地图推广电话,永久免费做网站,网站设计编程有哪些文章目录 线性回归模型简介一元线性回归模型多元线性回归模型误差项分析一元线性模型实例完整代码 多元线性模型实例完整代码 线性回归模型简介 线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。 相关关系&…

文章目录

  • 线性回归模型简介
  • 一元线性回归模型
  • 多元线性回归模型
  • 误差项分析
  • 一元线性模型实例
    • 完整代码
  • 多元线性模型实例
    • 完整代码

线性回归模型简介

  • 线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。
    • 相关关系:包含因果关系和平行关系
    • 因果关系:回归分析【原因引起结果,需要明确自变量和因变量】
    • 平行关系:相关关系【无因果关系,不区分自变量和因变量】

一元线性回归模型

在这里插入图片描述

多元线性回归模型

在这里插入图片描述

误差项分析

  • 误差项满足高斯分布:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 求解
    在这里插入图片描述
  • 一元线性回归模型与多元线性回归模型的区别
    • 自变量数量:一元线性回归只涉及一个自变量,而多元线性回归涉及两个或更多自变量。
    • 模型复杂度:由于包含更多的自变量,多元线性回归模型能够捕捉更复杂的数据关系,但也面临过拟合和变量选择等挑战。
    • 解释性:在多元线性回归中,每个自变量的回归系数表示在保持其他自变量不变的情况下,该自变量每增加一个单位对因变量的平均影响。而在一元线性回归中,这个解释更为直接和简单。
    • 应用场景:当数据集中只有一个自变量时,使用一元线性回归;当数据集包含多个可能相关的自变量时,使用多元线性回归。

一元线性模型实例

  • 安装scikit-learn
    python中执行线性回归的一个非常流行和强大的库是scikit-learn。scikit-learn提供了丰富的工具来进行数据挖掘和数据分析,包括简单和复杂的线性回归模型。
pip install scikit-learn
  • 准备数据集
    在这里插入图片描述

    • 数据集文件:通过网盘分享的文件:data.csv
      链接: https://pan.baidu.com/s/119pHKJu0ZPGYUfQA6_hYfg 提取码: i3vf
  • 实例步骤

    • 导入数据

    • 绘制数据的散点图

    • 求特征之间的相关系数

    • 估计模型参数,建立回归模型

    • 训练模型

    • 测试模型

    • 求出线性回归模型

      • 导入数据

      通过导入pandas模块,使用pandas的读取csv文件的方法进行导入数据集。

      data = pd.read_csv('data.csv')
      
      • 绘制散点图
      plt.scatter(data.广告投入,data.销售额)
      plt.show()
      

      在这里插入图片描述

      • 求特征之间的相关系数

      在Python中,特别是在使用pandas库处理数据时,corr()函数是一个非常有用的方法,它用于计算DataFrame中列与列之间的相关系数。
      相关系数越接近1,说明它们之间受相互的影响越大。

      corr = data.corr()
      

      在这里插入图片描述

      • 估计模型参数,建立回归模型

      分别用变量接收数据中的值,后面传入模型中训练
      这里直接调用 scikit-learn 库中的 LinearRegression() 模型

      lr = LinearRegression()
      x = data[["广告投入"]]
      y = data[["销售额"]]
      
      • 训练模型

      使用sklearn模块中的fit()方法进行训练

      lr.fit(x,y)
      
      • 测试模型

      这里取两个例子进行测试预测,score()方法用于评估模型对给定数据(x, y)的拟合优度,其中x是自变量数据,y是真实的因变量数据。对于线性回归模型,score 方法默认计算的是决定系数(R2 score),它表示模型预测值与实际值之间的拟合程度。R2 score的值越接近1,说明模型的拟合效果越好;如果为0,则表示模型的表现和简单预测平均值一样;如果小于0,则表示模型的表现甚至不如简单预测平均值。

      score = lr.score(x,y)
      #
      print(lr.predict([[50]]))
      print(lr.predict([[70]]))
      
      • 求出线性回归模型

      分别求出回归的模型的截距和斜率,.coef_方法用来求斜率而.intercept_方法用来求截距

      b = lr.coef_
      c = lr.intercept_
      print("一元线性回归模型为:y={:.2f}x1 + {:.2f}.".format(b[0][0],c[0]))
      
      • 结果
        在这里插入图片描述

完整代码

import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegressiondata = pd.read_csv('data.csv')
a = data.广告投入
# 绘制散点图
plt.scatter(data.广告投入,data.销售额)
plt.show()corr = data.corr()# 求x和y的相关系数
print(corr)
# 估计模型参数,建立回归模型
lr = LinearRegression()
x = data[["广告投入"]]
y = data[["销售额"]]lr.fit(x,y)# 训练模型score = lr.score(x,y)
#
print(lr.predict([[50]]))
print(lr.predict([[70]]))
b = lr.coef_
c = lr.intercept_
print("一元线性回归模型为:y={:.2f}x1 + {:.2f}.".format(b[0][0],c[0]))

多元线性模型实例

多元线性模型与一元线性模型结构差不多相同,有些许差别。

  • 导入数据
    在这里插入图片描述

本次使用的数据为糖尿病的数据,共有10个特征变量的自变量和最后一列的因变量。
通过网盘分享的文件:糖尿病数据.csv
链接: https://pan.baidu.com/s/1lO8IshYhgmkGlNYMBMIK4w 提取码: mh94

完整代码

import pandas as pd
from sklearn.linear_model import LinearRegressiondata = pd.read_csv("糖尿病数据.csv")corr = data[['age','sex','bmi','bp','s1','s2','s3','s4','s5','s6','target']].corr()lr_model = LinearRegression()
x = data[['age','sex','bmi','bp','s1','s2','s3','s4','s5','s6']]
y = data[['target']]lr_model.fit(x,y)score = lr_model.score(x,y)print(lr_model.predict([[-0.0926954778032799,-0.044641636506989,-0.0406959404999971,-0.0194420933298793,-0.0689906498720667,-0.0792878444118122,0.0412768238419757,-0.076394503750001,-0.0411803851880079,-0.0963461565416647]]))
print(lr_model.predict([[-0.0963280162542995,-0.044641636506989,-0.0838084234552331,0.0081008722200108,-0.103389471327095,-0.0905611890362353,-0.0139477432193303,-0.076394503750001,-0.0629129499162512,-0.0342145528191441]]))a = lr_model.coef_
b = lr_model.intercept_print("糖尿病线性回归模型为:y ={:.2f}x1 + {:.2f}x2 + {:.2f}x3 + {:.2f}x4 + {:.2f}x5 + {:.2f}x6 + {:.2f}x7 + {:.2f}x8 + {:.2f}x9 + {:.2f}x10 + {:.2f}.".format(a[0][0],a[0][1],a[0][2],a[0][3],a[0][4],a[0][5],a[0][6],a[0][7],a[0][8],a[0][9],b[0]))
  • 结果
    在这里插入图片描述

可以看到一元线性回归模型和多元线性回归模型的结果只是多元线性回归模型有多个自变量,来控制因变量,且多元线性回归模型要导入多个特征数据,数据处理阶段并无太大区别。

http://www.tj-hxxt.cn/news/77600.html

相关文章:

  • 蚌埠公司做网站google推广工具
  • 旅游网站首页制作友链交换
  • php动态网站开发实例seo如何优化图片
  • 扬州网站建设培训淘宝推广软件
  • wordpress做登录百度seo怎么查排名
  • wordpress编辑器不好用长沙seo优化首选
  • 网站宣传方法百度推广投诉电话客服24小时
  • 郑州网站建设的公司手机百度高级搜索入口在哪里
  • 深圳营销型网站费用软文营销的步骤
  • 在什么网站做推广最好免费培训网站
  • wordpress放置备案号东莞seo代理
  • 做非法集资资讯的网站友情链接发布网
  • 建个网站我在万网购买了一个域名接下来要怎么做百度推广好不好做
  • 猛烈做瞹瞹视频澳洲网站长春网站优化
  • 做近代史纲要题的网站公司排名seo
  • 广丰做网站公司软件测试培训班多少钱
  • 可以做词云的网站index百度指数
  • 介休做网站青岛seo青岛黑八网络最强
  • 公司有些网站打不开百度网盘客服电话24小时
  • 中国企业网站开发百度seo排名优化技巧分享
  • 济南做网站的中企如何获取永久免费域名
  • 商城网站如何建设方案网络推广图片大全
  • 有哪些学校的网站做的好处天桥区seo全网宣传
  • 上海宝山区做网站的软考十大最靠谱it培训机构
  • 网站管理 官网优化大师怎么强力卸载
  • 最有效的网站推广方法网络营销广告策划
  • 网站系统 外贸重庆整站seo
  • 网站设计制作怎样可以快速营销宝
  • ps个人网站建设湖南seo网站策划
  • wordpress移动端音频播放aso优化