当前位置: 首页 > news >正文

怎么分辨网站是不是h5品牌策划公司介绍

怎么分辨网站是不是h5,品牌策划公司介绍,生产型或服务型企业网站有哪些,wordpress手机适配插件目录 LeetCode:121. 买卖股票的最佳时机 暴力解法 贪心法 动态规划法 LeetCode:122.买卖股票的最佳时机II 基本思路 LeetCode: 买卖股票的最佳时机III、IV 基本思路 C代码 LeetCode:121. 买卖股票的最佳时机 力扣题目链接 文字讲解:121. 买卖股票的最佳时…

目录

LeetCode:121. 买卖股票的最佳时机

暴力解法

贪心法

动态规划法

LeetCode:122.买卖股票的最佳时机II

基本思路

LeetCode:  买卖股票的最佳时机III、IV

基本思路

C++代码


LeetCode:121. 买卖股票的最佳时机

力扣题目链接

文字讲解:121. 买卖股票的最佳时机

视频讲解:动态规划之 LeetCode:121.买卖股票的最佳时机1

暴力解法

class Solution {
public:int maxProfit(vector<int>& prices) {int result = 0;for (int i = 0; i < prices.size(); i++) {for (int j = i + 1; j < prices.size(); j++){result = max(result, prices[j] - prices[i]);}}return result;}
};

        但是很容易看出时间复杂度为O(n^2)----超时!

贪心法

        因为股票就买卖一次,那么贪心的想法很自然就是取最左最小值,取最右最大值,那么得到的差值就是最大利润。

class Solution {
public:int maxProfit(vector<int>& prices) {int low = INT_MAX;int result = 0;for (int i = 0; i < prices.size(); i++) {low = min(low, prices[i]);  // 取最左最小价格result = max(result, prices[i] - low); // 直接取最大区间利润}return result;}
};

动态规划法

动规五部曲分析如下:

  • 确定dp数组(dp table)以及下标的含义

        dp[i][0]表示第i天持有股票(当然也可以表示为不持有股票,但如果这样设置那么在确定递推公式时连续性不明显,在最佳时机III中能比较明显的体会到)所得最多现金。dp[i][1]表示第i天不持有股票所得最多现金。

  • 确定递推公式

        dp[i][0]和dp[i][1]应该分开计算。

        对于dp[i][0]来说,存在两种情况,一种是第i-1天同样持有股票,另一种是第i-1天不持有股票,在第i天买入,此时dp[i][0] = max(dp[i-1][0],dp[i-1][1] - price[i]);

        同理,对于dp[i][1]同样有两种情况,dp[i][1] = max(dp[i-1][1],dp[i-1][0] + price[i]);

  • dp数组如何初始化

        由递推公式可以看出,其基础都是要从dp[0][0]和dp[0][1]推导出来的,所以dp[0][0]表示第一天持有股票,即第一天买入,此时最大金额为-price[0];dp[0][1]表示第一天不持有股票,即为初试金额0。

  • 确定遍历顺序

        从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。

  • 举例推导dp数组

        以示例1,输入:[7,1,5,3,6,4]为例,dp数组状态如下:

        显然,最后的结果一定是dp[5][0]和dp[5][1]中的一个结果,那么应该选择哪一个呢?其实仔细想想很容易得出,持有股票所拥有的金额一定小于不持有股票的金额,因此最后返回值为dp[5][1]。

// 版本一
class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();if (len == 0) return 0;vector<vector<int>> dp(len, vector<int>(2));dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i][0] = max(dp[i - 1][0], -prices[i]);dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);}return dp[len - 1][1];}
};

        当然这样的时间复杂度和空间复杂度都是O(n)。从递推公式可以看出,dp[i]只是依赖于dp[i - 1]的状态。那么我们只需要记录 当前天的dp状态和前一天的dp状态就可以了,可以使用滚动数组来节省空间。

// 版本二
class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);}return dp[(len - 1) % 2][1];}
};

LeetCode:122.买卖股票的最佳时机II

力扣题目链接

文字讲解:LeetCode:122.买卖股票的最佳时机II

视频讲解:动态规划,股票问题第二弹 | LeetCode:122.买卖股票的最佳时机II

基本思路

        和买卖股票的最佳时机的步骤基本一致,不同点在于本题可以不限次数的购买股票,因此递推公式需要进行改变:

dp[i][0] = max(dp[i-1][0],dp[i-1][1] + prices[i]);

dp[i][1] = max(dp[i-1][1],dp[i-1][0] - prices[i]);

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(len, vector<int>(2, 0));dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);}return dp[len - 1][1];}
};

        当然同样为了降低空间复杂度,可以采用滚动数组的方法。

// 版本二
class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i % 2][0] = max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] - prices[i]);dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);}return dp[(len - 1) % 2][1];}
};

LeetCode:  买卖股票的最佳时机III、IV

题目:123. 买卖股票的最佳时机 III、188. 买卖股票的最佳时机 IV

文字讲解: 123.买卖股票的最佳时机III、188. 买卖股票的最佳时机 IV

视频讲解:动态规划,股票至多买卖两次,怎么求? | LeetCode:123.买卖股票最佳时机III

基本思路

        买卖股票的最佳时机III这个题目要求最多出手两次,使所获得的利益最大化。而最佳时机IV则是引申到了n次。因此可以先通过最佳时机III进行分析。

动规五部曲分析如下:

  • 确定dp数组(dp table)以及下标的含义

        首先,如果至多出手三次,那么我们就存在5种状态,即dp[0][0]表示第一天第0次不持有股票(即初始状态)所获的最大金额,即dp[0][1]表示第一天第一次持有股票(即第一次买入时的状态)所获的最大金额,即dp[0][2]表示第一次不持有股票(即第一次卖出时的状态)所获的最大金额,即dp[0][3]表示第一天第二次持有股票所获的最大金额,即dp[0][4]表示第一天第二次不持有股票所获的最大金额。

  • 确定递推公式

        dp[i][0] = dp[i-1][0];

        dp[i][1] = max(dp[i-1][1],dp[i-1][0] - prices[i]);

        dp[i][2] = max(dp[i-1][2],dp[i-1][1] + prices[i]);

        dp[i][3] = max(dp[i-1][3],dp[i-1][2] - prices[i]);

        dp[i][4] = max(dp[i-1][4],dp[i-1][3] + prices[i]);

  • dp数组如何初始化

        数组初始化为0,并且dp[0][1] = -prices[0];以及dp[0][3] = -prices[0];

  • 确定遍历顺序

        从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

  • 举例推导dp数组

        以输入[1,2,3,4,5]为例。

C++代码

// 版本一
class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(5, 0));dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[i][0] = dp[i - 1][0];dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[prices.size() - 1][4];}
};

        同样,可以使用滚动数组进行优化。

// 版本二
class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<int> dp(5, 0);dp[1] = -prices[0];dp[3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[1] = max(dp[1], dp[0] - prices[i]);dp[2] = max(dp[2], dp[1] + prices[i]);dp[3] = max(dp[3], dp[2] - prices[i]);dp[4] = max(dp[4], dp[3] + prices[i]);}return dp[4];}
};
http://www.tj-hxxt.cn/news/7734.html

相关文章:

  • 企业做网站需要什么手续吗东莞有限公司seo
  • 睢县网站建设广州营销课程培训班
  • 做旅游网站的好处凤凰网全国疫情实时动态
  • 网站建设价格热线360网站排名优化
  • 顺义广州网站建设广州网页推广公司
  • 做网站信科网站建设建立网站平台需要多少钱
  • 广西网站建设网址成都品牌推广
  • 用流媒体做的电台网站百度seo优化公司
  • 做易买网网站项目心得体会谷歌网站网址
  • 如何用自己电脑做网站服务器湘潭seo快速排名
  • 律师网站深圳网站设计seo搜索引擎优化是通过优化答案
  • 个人动态网站怎么做seo优化前景
  • 双语网站代码seo的工具有哪些
  • 手机网站设计神器百度广告服务商
  • 公司做网站需要提供的材料产品seo怎么优化
  • 江苏城乡建设学校网站高平网站优化公司
  • 四川专业旅游网站制作电子营销主要做什么
  • wordpress全站cdn太原seo招聘
  • 网站管理员登录入口网络公关公司联系方式
  • 软件开发和网站开发哪个更好seo服务指什么意思
  • 湖南至诚建设机械有限公司网站解封后中国死了多少人
  • 扬州做公司网站上海关键词自动排名
  • 吉林网站建站系统平台厦门人才网唯一官方网站登录入口
  • 建设银行网上银行登录入口seo最新快速排名
  • 搜狗推广入口网站seo推广计划
  • 用h5开发的网站模板下载深圳网络推广公司有哪些
  • 宝安网页设计价格关键词排名优化公司
  • 网站名拍卖价格怎么请专业拓客团队
  • 做网站都需要什么资料福州排名seo公司
  • 彩妆网站建设上海最新发布