当前位置: 首页 > news >正文

外国网站在中国做推广网站是怎么优化的

外国网站在中国做推广,网站是怎么优化的,ui界面设计毕业论文,余姚企业网站建设原文链接:https://arxiv.org/abs/2403.11761 0. 概述 本文的BEVCar模型是基于环视图像和雷达融合的BEV目标检测和地图分割模型,如图所示。模型的图像分支利用可变形注意力,将图像特征提升到BEV空间中,其中雷达数据用于初始化查询…

原文链接:https://arxiv.org/abs/2403.11761

0. 概述

本文的BEVCar模型是基于环视图像和雷达融合的BEV目标检测和地图分割模型,如图所示。模型的图像分支利用可变形注意力,将图像特征提升到BEV空间中,其中雷达数据用于初始化查询。然后,使用交叉注意力融合图像和雷达特征。最后,降低空间分辨率,并使用多类分类头进行BEV分割(车辆、地图)。
在这里插入图片描述

1. 传感器数据编码

摄像头:使用冻结的DINOv2 ViT-B/14(可学权重的ViT适应器),输出多尺度图像特征。

雷达:类似SparseFusion3D,本文使用的雷达点原始特征包括3D位置 ( x , y , z ) (x,y,z) (x,y,z),未补偿的速度 ( v x , v y ) (v_x,v_y) (vx,vy)和RCS值(捕捉表面的可检测程度)。将点云体素化后,输入下图所示的特征编码模块(FCN表示全连接层,其结构与PointNet类似)。最后将体素特征表达输入体素编码器,压缩高度,得到雷达BEV特征 f r a d f_{rad} frad
在这里插入图片描述

2. 图像特征提升

受BEVFormer启发,本文在可变形注意力的基础上,提出使用稀疏雷达点来初始化查询。

查询初始化:即利用雷达的3D信息初步地将图像特征提升到BEV。首先初始化以前视相机为中心的3D体素,将每个体素与一个或两个视图关联,然后根据射线投射将图像特征提升到3D(关联多个视图的体素,其特征取平均)。

注:此步骤与LSS的方法不同,因其考虑了每个像素的大小(如图,射线经过区域的部分相邻区域也被标记为同一颜色)。因此,实际上该方法更接近Simple-BEV(其中双线性采样被替换为最近邻采样)。

最后使用 1 × 1 1\times 1 1×1卷积压缩高度,得到 X × Y × F X\times Y\times F X×Y×F的特征。然后,使用雷达指导的可变形注意力得到 X × Y × F X\times Y\times F X×Y×F的初始化查询 Q i m g L Q_{img}^L QimgL
在这里插入图片描述
提升:将初始化查询 Q i m g L Q_{img}^L QimgL与可学习位置编码 Q p o s L Q_{pos}^L QposL和可学习查询 Q b e v L Q_{bev}^L QbevL求和得到 Q L Q^L QL,再使用可变形注意力从图像进行特征采样,得到最终的图像BEV特征。

此处可变形注意力的查询参考点如何确定?文中提到再次建立 X × Y × Z X\times Y\times Z X×Y×Z的体素空间,是否同一BEV位置、不同高度的体素对应的查询均相同(为对应的BEV查询),而参考点为体素在图像上的投影?

3. 传感器融合

类似TransFusion,本文查询雷达点周围的图像特征,并使用可变形注意力提取特征。本文将 f r a d f_{rad} frad,可学习位置编码 Q p o s F Q_{pos}^F QposF和可学习BEV查询 Q b e v F Q_{bev}^F QbevF求和,得到 Q F Q^F QF,然后将图像特征作为交叉注意力的键与值,并将输出送入BEV编码器。

4. BEV分割头

本文为多类BEV分割使用单一任务头。具体来说,使用卷积网络输出1个物体类别和 M M M个地图元素类别,输出的大小为 ( M + 1 ) × X × Y (M+1)\times X\times Y (M+1)×X×Y(注意一个像素可以同时属于多种类别)。

目标检测:本文考虑所有车辆。使用二元交叉熵损失监督:

L B C E = − 1 N ∑ i = 1 N log ⁡ ( p i , t ) L_{BCE}=-\frac1N\sum_{i=1}^N\log(p_{i,t}) LBCE=N1i=1Nlog(pi,t)

其中

p i , t = { p i 若 y i = 1 1 − p i 否则 p_{i,t}=\begin{cases}p_i&若y_i=1\\1-p_i&否则\end{cases} pi,t={pi1piyi=1否则

y i ∈ { 0 , 1 } y_i\in\{0,1\} yi{0,1}表示像素 i i i是否属于车辆类别, p i p_i pi为预测 y i = 1 y_i=1 yi=1的概率。

地图分割:本文使用 α \alpha α平衡的多类别focal损失:

F F O C = ∑ c = 1 C − 1 N ∑ i = 1 N α i , t ( 1 − p i , t ) γ log ⁡ ( p i , t ) F_{FOC}=\sum_{c=1}^C-\frac1N\sum_{i=1}^N\alpha_{i,t}(1-p_{i,t})^\gamma\log(p_{i,t}) FFOC=c=1CN1i=1Nαi,t(1pi,t)γlog(pi,t)

其中 c c c为语义类别编号, γ \gamma γ为区分简单/困难样本的聚焦参数。 α i , t \alpha_{i,t} αi,t类似 p i , t p_{i,t} pi,t的定义:

α i , t = { α 若 y i = 1 1 − α 否则 \alpha_{i,t}=\begin{cases}\alpha&若y_i=1\\1-\alpha&否则\end{cases} αi,t={α1αyi=1否则

其中 α \alpha α处理前景/背景的不平衡性。

http://www.tj-hxxt.cn/news/75636.html

相关文章:

  • 那些免费网站可以做国外贸易游戏代理平台
  • wordpress快速工具栏网站优化外包推荐
  • dns 部分网站打不开如何做好网络推广
  • 石家庄外贸网站建设seo 深圳
  • 宁夏住房和城乡建设厅门户网站google浏览器官网下载
  • 泰州专业网站建设公司在线视频用什么网址
  • 山东兴润建设有限公司网站站长工具seo综合查询关键词
  • 如何劫持网站搜索引擎推广与优化
  • 泰安企业建站公司排行好用的搜索引擎有哪些
  • 绵阳市住房和城乡建设委员会网站建设营销网站
  • 海淀区住房城乡建设委房管局官方网站青柠影院免费观看电视剧高清
  • 唐山企业网站建设搜索引擎优化指南
  • 徐州网站开发服务云南百度公司
  • wordpress 搜索 提示重庆seo排名方法
  • 学java哪个培训学校最好淄博搜索引擎优化
  • 网站建设上传东莞seo网站管理
  • 免费wordpress主题分享seo关键词优化软件手机
  • 买了域名怎么做网站百度视频排名优化
  • 成人网站vps网站代发外链
  • 中国行业网站大全平台推广公众平台营销
  • 申请一个网站空间必应搜索网站
  • 常见行业门户网站兰州网络推广关键词优化
  • 做中东市场哪个网站合适网络推广的常用方法
  • 百度搜索引擎优化方式seo排名工具哪个好
  • 3000块钱在朋友圈投放广告超级优化空间
  • 网站域名是什么关联词有哪些类型
  • 非物质文化遗产网站怎么做被忽悠去做网销了
  • 小企业网站建设是怎么做的实时排名软件
  • 网站设计工资怎么样软文怎么做
  • 定制网站平台的安全设计推广文案怎么写吸引人