当前位置: 首页 > news >正文

企业网站建设总结电商seo是指

企业网站建设总结,电商seo是指,c2c模式的平台有哪些,电子商务网站推广的主要方法为了便于理解,可以先玩一玩这个网站:GAN Lab: Play with Generative Adversarial Networks in Your Browser! GAN的本质:枯叶蝶和鸟。生成器的目标:让枯叶蝶进化,变得像枯叶,不被鸟准确识别。判别器的目标&…

为了便于理解,可以先玩一玩这个网站:GAN Lab: Play with Generative Adversarial Networks in Your Browser!

GAN的本质:枯叶蝶和鸟。生成器的目标:让枯叶蝶进化,变得像枯叶,不被鸟准确识别。判别器的目标:准确判别是枯叶还是鸟

伪代码: 

案例:

原始数据:

案例结果: 

 案例完整代码:

# import os
import torch
import torch.nn as nn
import torchvision as tv
from torch.autograd import Variable
import tqdm
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文标签
plt.rcParams['axes.unicode_minus'] = False# dir = '... your path/faces/'
dir = './data/train_data'
# path = []
#
# for fileName in os.listdir(dir):
#     path.append(fileName)       # len(path)=51223noiseSize = 100     # 噪声维度
n_generator_feature = 64        # 生成器feature map数
n_discriminator_feature = 64        # 判别器feature map数
batch_size = 50
d_every = 1     # 每一个batch训练一次discriminator
g_every = 5     # 每五个batch训练一次generatorclass NetGenerator(nn.Module):def __init__(self):super(NetGenerator,self).__init__()self.main = nn.Sequential(      # 神经网络模块将按照在传入构造器的顺序依次被添加到计算图中执行nn.ConvTranspose2d(noiseSize, n_generator_feature * 8, kernel_size=4, stride=1, padding=0, bias=False),#转置卷积层:输入特征映射的尺寸会放大,通道数可能会减小,普通卷积层:输入特征映射的尺寸会缩小,但通道数可能会增加nn.BatchNorm2d(n_generator_feature * 8),nn.ReLU(True),       # (n_generator_feature * 8) × 4 × 4        (1-1)*1+1*(4-1)+0+1 = 4nn.ConvTranspose2d(n_generator_feature * 8, n_generator_feature * 4, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(n_generator_feature * 4),nn.ReLU(True),      # (n_generator_feature * 4) × 8 × 8     (4-1)*2-2*1+1*(4-1)+0+1 = 8nn.ConvTranspose2d(n_generator_feature * 4, n_generator_feature * 2, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(n_generator_feature * 2),nn.ReLU(True),  # (n_generator_feature * 2) × 16 × 16nn.ConvTranspose2d(n_generator_feature * 2, n_generator_feature, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(n_generator_feature),nn.ReLU(True),      # (n_generator_feature) × 32 × 32nn.ConvTranspose2d(n_generator_feature, 3, kernel_size=5, stride=3, padding=1, bias=False),nn.Tanh()       # 3 * 96 * 96)def forward(self, input):return self.main(input)class NetDiscriminator(nn.Module):def __init__(self):super(NetDiscriminator,self).__init__()self.main = nn.Sequential(nn.Conv2d(3, n_discriminator_feature, kernel_size=5, stride=3, padding=1, bias=False),nn.LeakyReLU(0.2, inplace=True),        # n_discriminator_feature * 32 * 32nn.Conv2d(n_discriminator_feature, n_discriminator_feature * 2, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(n_discriminator_feature * 2),nn.LeakyReLU(0.2, inplace=True),         # (n_discriminator_feature*2) * 16 * 16nn.Conv2d(n_discriminator_feature * 2, n_discriminator_feature * 4, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(n_discriminator_feature * 4),nn.LeakyReLU(0.2, inplace=True),  # (n_discriminator_feature*4) * 8 * 8nn.Conv2d(n_discriminator_feature * 4, n_discriminator_feature * 8, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(n_discriminator_feature * 8),nn.LeakyReLU(0.2, inplace=True),  # (n_discriminator_feature*8) * 4 * 4nn.Conv2d(n_discriminator_feature * 8, 1, kernel_size=4, stride=1, padding=0, bias=False),nn.Sigmoid()        # 输出一个概率)def forward(self, input):return self.main(input).view(-1)def train():for i, (image,_) in tqdm.tqdm(enumerate(dataloader)):       # type((image,_)) = <class 'list'>, len((image,_)) = 2 * 256 * 3 * 96 * 96real_image = Variable(image)#real_image = real_image.cuda()if (i + 1) % d_every == 0:  #d_every = 1,每一个batch训练一次discriminatoroptimizer_d.zero_grad()output = Discriminator(real_image)      # 尽可能把真图片判为Trueerror_d_real = criterion(output, true_labels)error_d_real.backward()noises.data.copy_(torch.randn(batch_size, noiseSize, 1, 1))fake_img = Generator(noises).detach()       # 根据噪声生成假图fake_output = Discriminator(fake_img)       # 尽可能把假图片判为Falseerror_d_fake = criterion(fake_output, fake_labels)error_d_fake.backward()optimizer_d.step()if (i + 1) % g_every == 0:optimizer_g.zero_grad()noises.data.copy_(torch.randn(batch_size, noiseSize, 1, 1))fake_img = Generator(noises)        # 这里没有detachfake_output = Discriminator(fake_img)       # 尽可能让Discriminator把假图片判为Trueerror_g = criterion(fake_output, true_labels)error_g.backward()optimizer_g.step()def show(num):fix_fake_imags = Generator(fix_noises)fix_fake_imags = fix_fake_imags.data.cpu()[:64] * 0.5 + 0.5# x = torch.rand(64, 3, 96, 96)fig = plt.figure(1)i = 1for image in fix_fake_imags:ax = fig.add_subplot(8, 8, eval('%d' % i)) #将Figure划分为8行8列的子图网格,并将当前的子图添加到第i个位置。# plt.xticks([]), plt.yticks([])  # 去除坐标轴plt.axis('off')plt.imshow(image.permute(1, 2, 0)) #permute()函数可以对维度进行重排,Matplotlib期望的图像格式是(H, W, C),即高度、宽度、通道i += 1plt.subplots_adjust(left=None,  # the left side of the subplots of the figureright=None,  # the right side of the subplots of the figurebottom=None,  # the bottom of the subplots of the figuretop=None,  # the top of the subplots of the figurewspace=0.05,  # the amount of width reserved for blank space between subplotshspace=0.05)  # the amount of height reserved for white space between subplots)plt.suptitle('第%d迭代结果' % num, y=0.91, fontsize=15)plt.savefig("images/%dcgan.png" % num)if __name__ == '__main__':transform = tv.transforms.Compose([tv.transforms.Resize(96),     # 图片尺寸, transforms.Scale transform is deprecatedtv.transforms.CenterCrop(96),tv.transforms.ToTensor(),tv.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))       # 变成[-1,1]的数])dataset = tv.datasets.ImageFolder(dir, transform=transform)dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4, drop_last=True)   # module 'torch.utils.data' has no attribute 'DataLoder'print('数据加载完毕!')Generator = NetGenerator()Discriminator = NetDiscriminator()optimizer_g = torch.optim.Adam(Generator.parameters(), lr=2e-4, betas=(0.5, 0.999))optimizer_d = torch.optim.Adam(Discriminator.parameters(), lr=2e-4, betas=(0.5, 0.999))criterion = torch.nn.BCELoss()true_labels = Variable(torch.ones(batch_size))     # batch_sizefake_labels = Variable(torch.zeros(batch_size))fix_noises = Variable(torch.randn(batch_size, noiseSize, 1, 1))noises = Variable(torch.randn(batch_size, noiseSize, 1, 1))     # 均值为0,方差为1的正态分布# if torch.cuda.is_available() == True:#     print('Cuda is available!')#     Generator.cuda()#     Discriminator.cuda()#     criterion.cuda()#     true_labels, fake_labels = true_labels.cuda(), fake_labels.cuda()#     fix_noises, noises = fix_noises.cuda(), noises.cuda()#plot_epoch = [1,5,10,50,100,200,500,800,1000,1500,2000,2500,3000]plot_epoch = [1,5,10,50,100,200,500,800,1000,1200,1500]for i in range(1500):        # 最大迭代次数train()print('迭代次数:{}'.format(i))if i in plot_epoch:show(i)

http://t.csdnimg.cn/FTSriicon-default.png?t=N7T8http://t.csdnimg.cn/FTSri

http://www.tj-hxxt.cn/news/71773.html

相关文章:

  • 广州网站开发设计平台百度关键词优化软件如何
  • 中企动力提供网站建设经典软文案例标题加内容
  • seo优化网站网页教学seo优化常识
  • 通用企业网站织梦模板(红绿蓝三色)免费的行情网站app软件
  • b站大全2023年更新优化关键词哪家好
  • 运营商网站服务密码长沙靠谱关键词优化服务
  • 桌面上链接网站怎么做游戏推广拉人渠道
  • 网站正建设中seo综合查询网站
  • php做网站需要学的东西今天发生了什么重大新闻
  • 苏州城乡住房建设厅网站搭建网站步骤
  • 潍坊专业美甲美睫化妆培训机构博客优化网站seo怎么写
  • 免费个人简历模板上海网络推广优化公司
  • 网站推广营销公司简述搜索引擎优化
  • 网站开发与java技术app推广平台网站
  • 金华网站制作推广西地那非片
  • 有站点地图的网站百度灰色关键词技术
  • 山东网络推广优化排名优化营商环境发言稿
  • 建设钓鱼网站网站关键词优化代理
  • 深圳品牌网站设计电话网店运营入门基础知识
  • 做网站前端用什么软件好搜索引擎优化管理实验报告
  • 新手学做网站优化关键词优化是怎么弄的
  • 自己家的电脑宽带50m做网站服务器短链接在线生成免费
  • 山东企业展厅设计公司厦门seo关键词优化代运营
  • 美食网站怎么做dw软件开发公司排行榜
  • 苏州做网站品牌公司滨州网站seo
  • 优秀门户网站欣赏百度的网址怎么写
  • 天津做网站好的公司营销技巧培训
  • 网站策划书优势怎么分析软文是什么意思通俗点
  • wordpress只用不带www汕头seo外包公司
  • 网站建设.pdf百度云360建网站