当前位置: 首页 > news >正文

做直销网站网络优化公司有哪些

做直销网站,网络优化公司有哪些,房和城乡建设委员会网站,专注软件优化分享的网站项目源码 已上传至githubCIFAR10Model,如果有帮助可以点个star 简介 在前文【Pytorch】10.CIFAR10模型搭建我们学习了用Module来模拟搭建CIFAR10的训练流程 本节将会加入损失函数,梯度下降,TensorBoard来完整搭建一个训练的模型 基本步骤 搭建…

项目源码

已上传至githubCIFAR10Model,如果有帮助可以点个star

简介

在前文【Pytorch】10.CIFAR10模型搭建我们学习了用Module来模拟搭建CIFAR10的训练流程
本节将会加入损失函数,梯度下降,TensorBoard来完整搭建一个训练的模型

基本步骤

搭建神经网络最主要的流程是

  • 导入数据集(包括训练集和测试集)
  • 创建DataLoader
  • 创建自定义的神经网络
  • 选择损失函数与梯度下降算法
  • 进行n轮训练
  • n轮训练完成后通过测试集进行验证
  • 引入TensorBoard进行可视化
  • 保存每轮训练好的模型
    接下来将逐步拆解这每一个步骤

1.导入数据集

因为我们本文是要训练CIFAR10的模型,所以我们导入CIFAR10的数据集

# 1.创建训练数据集
train_dataset = torchvision.datasets.CIFAR10(root='../dataset', train=True, download=True,transform=torchvision.transforms.ToTensor())
test_dataset = torchvision.datasets.CIFAR10(root='../dataset', train=False, download=True,transform=torchvision.transforms.ToTensor())
# 记录数据集大小
train_size = len(train_dataset)
test_size = len(test_dataset)

分别导入训练集与测试集,并且分别记录训练集与测试集的大小
对参数的解释可以看【Pytorch】4.torchvision.datasets的使用这篇文章

2.创建DataLoader

DataLoader主要定义了如何在数据集中取数据的规则,具体讲解可以看【Pytorch】5.DataLoder的使用

# 2.创建dataloader
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=True)

3.创建自定义的神经网络

在这里插入图片描述
我们可以在网上搜到CIFAR10的网络模型,通过网络模型来搭建网络,具体可以看【Pytorch】10.CIFAR10模型搭建

import torch
from torch import nnclass CIFAR10Model(nn.Module):def __init__(self):super(CIFAR10Model, self).__init__()self.conv1 = nn.Conv2d(3, 32, 5, padding=2)self.maxpool1 = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(32, 32, 5, padding=2)self.maxpool2 = nn.MaxPool2d(2, 2)self.conv3 = nn.Conv2d(32, 64, 5, padding=2)self.maxpool3 = nn.MaxPool2d(2, 2)self.flatten = nn.Flatten()self.fc1 = nn.Linear(1024, 64)self.fc2 = nn.Linear(64, 10)def forward(self, x):x = self.conv1(x)x = self.maxpool1(x)x = self.conv2(x)x = self.maxpool2(x)x = self.conv3(x)x = self.maxpool3(x)x = self.flatten(x)x = self.fc1(x)x = self.fc2(x)return xif __name__ == '__main__':model = CIFAR10Model()input_test = torch.ones((64, 3, 32, 32))output_test = model(input_test)print(output_test.shape)

这里我们新创建了一个model.py用于专门存储网络结构,这样在我们的训练文件中,可以通过

from model import *# 3.创建神经网络
model = CIFAR10Model()

来导入我们自定义的神经网络

4.选择损失函数和梯度下降的方法

我们选择了交叉熵损失函数与SGD的梯度下降算法,具体讲解可以看【Pytorch】11.损失函数与梯度下降

# 4.设置损失函数与梯度下降算法
loss_fn = nn.CrossEntropyLoss()learn_rate = 1e-2
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)

5.开始进行训练

首先将模型设置为训练模式

    model.train()

具体的训练流程分为以下几部

  • 从DataLoader中获取图片以及对应的编号
  • 将图片传入神经网络并获取输出
  • 将优化器清零
  • 计算损失函数
  • 进行梯度下降
  • 调用优化器进行更新
    for data in train_loader:# 训练基本流程inputs, labels = dataoutputs = model(inputs)optimizer.zero_grad()loss = loss_fn(outputs, labels)loss.backward()optimizer.step()

在基础训练的基础上,还安排了每进行100次训练就将训练数据print出来,并且写入tensorboard

 # 第i轮训练次数加一pre_train_step += 1pre_train_loss += loss.item()total_train_step += 1# 每100次输出一下if pre_train_step % 100 == 0:end_train_time = time.time()print(f'当前为第{i+1}轮训练,当前训练轮数为:{pre_train_step},已经过时间为:{end_train_time-start_time},当前训练次数的平均损失为:{pre_train_loss / pre_train_step}')# 添加可视化writer.add_scalar('train_loss', pre_train_loss / pre_train_step, total_train_step)print(f"----------------------------第{i + 1}轮训练完成----------------------------")

6.测试集验证

首先将模型设置为测试集模式

    model.eval()

首先通过with关键字来创建一个没有梯度的上下文
验证方法与训练集类似,但是没有计算梯度与更新优化器的步骤

 with torch.no_grad():for data in test_loader:# 测试集流程inputs, labels = dataoutputs = model(inputs)loss = loss_fn(outputs, labels)

然后通过torch.argmax用于计算所有标签的最大值

  • 参数为1时代表横向判断
  • 参数为0的代表纵向判断
    计算当前模型在训练集中的正确次数
            pre_accuracy += outputs.argmax(1).eq(labels).sum().item()

7.引入TensorBoard进行可视化

我们主要是通过Summary中的add_scalar来建立可视化函数来进行可视化的,具体可以看【Pytorch】2.TensorBoard的运用

# 创建TensorBoard
writer = SummaryWriter('./CIFAR10_logs')# 在训练集中,输出每一百次训练的损失函数平均值# 每100次输出一下if pre_train_step % 100 == 0:end_train_time = time.time()print(f'当前为第{i+1}轮训练,当前训练轮数为:{pre_train_step},已经过时间为:{end_train_time-start_time},当前训练次数的平均损失为:{pre_train_loss / pre_train_step}')# 添加可视化writer.add_scalar('train_loss', pre_train_loss / pre_train_step, total_train_step)# 在测试集中,输出模型在测试集中的正确率
pre_accuracy += outputs.argmax(1).eq(labels).sum().item()writer.add_scalar('test_accuracy', pre_accuracy / test_size, i)

8.保存模型

具体可以看【Pytorch】12.网络模型的加载、修改与保存

    # 保存每轮的训练模型torch.save(CIFAR10Model, f'./CIFAR10TrainModel{i}.pth')

完整代码

import time
import torch
import torchvision.transforms
from torch.utils.tensorboard import SummaryWriterfrom model import *# 1.创建训练数据集
train_dataset = torchvision.datasets.CIFAR10(root='../dataset', train=True, download=True,transform=torchvision.transforms.ToTensor())
test_dataset = torchvision.datasets.CIFAR10(root='../dataset', train=False, download=True,transform=torchvision.transforms.ToTensor())
# 记录数据集大小
train_size = len(train_dataset)
test_size = len(test_dataset)# 2.创建dataloader
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=True)# 3.创建神经网络
model = CIFAR10Model()# 4.设置损失函数与梯度下降算法
loss_fn = nn.CrossEntropyLoss()learn_rate = 0.0001
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)# 训练轮数
total_train_step = 0
total_test_step = 0# 训练轮数
epoch = 20# 创建TensorBoard
writer = SummaryWriter('./CIFAR10_logs')
# 5.开始训练
for i in range(epoch):# 将模型设置为训练模式print(f"----------------------------开启第{i+1}轮训练----------------------------")model.train()# 第i轮训练的次数pre_train_step = 0# 第i轮训练的总损失pre_train_loss = 0# 第i轮训练的起始时间start_time = time.time()for data in train_loader:# 训练基本流程inputs, labels = dataoutputs = model(inputs)optimizer.zero_grad()loss = loss_fn(outputs, labels)loss.backward()optimizer.step()# 第i轮训练次数加一pre_train_step += 1pre_train_loss += loss.item()total_train_step += 1# 每100次输出一下if pre_train_step % 100 == 0:end_train_time = time.time()print(f'当前为第{i+1}轮训练,当前训练轮数为:{pre_train_step},已经过时间为:{end_train_time-start_time},当前训练次数的平均损失为:{pre_train_loss / pre_train_step}')# 添加可视化writer.add_scalar('train_loss', pre_train_loss / pre_train_step, total_train_step)print(f"----------------------------第{i + 1}轮训练完成----------------------------")# 设置为测试模式model.eval()# 第i轮训练集的总损失pre_test_loss = 0# 第i轮训练集的总正确次数pre_accuracy = 0print(f"----------------------------开启第{i + 1}轮测试----------------------------")# 配置没有梯度下降的环境with torch.no_grad():for data in test_loader:# 测试集流程inputs, labels = dataoutputs = model(inputs)loss = loss_fn(outputs, labels)# 定义参数pre_test_loss += loss.item()# 记录训练集的总正确率# argmax(1)代表横向判断,argmax(0)代表纵向判断pre_accuracy += outputs.argmax(1).eq(labels).sum().item()# 记录测试集运行完后的事件end_test_time = time.time()print(f'当前为第{i + 1}轮测试,已经过时间:{end_test_time - start_time},当前测试集的平均损失为:{pre_test_loss / test_size},当前在测试集的正确率为:{pre_accuracy / test_size}')writer.add_scalar('test_accuracy', pre_accuracy / test_size, i)print(f"----------------------------第{i + 1}轮测试完成----------------------------")# 保存每轮的训练模型torch.save(CIFAR10Model, f'./CIFAR10TrainModel{i}.pth')print(f"----------------------------第{i + 1}轮模型保存完成----------------------------")writer.close()

训练效果
在这里插入图片描述
在这里插入图片描述

http://www.tj-hxxt.cn/news/71251.html

相关文章:

  • 网站建立者枫树seo
  • 滁州市建设工程协会网站有广告位怎么找广告商
  • 免费新闻网站建设营销型网站制作公司
  • 自己做网站是用什么软件四川全网推网络推广
  • 共享网站的详细规划怎么开发网站
  • wap门户网站百度网站首页
  • 做网站设计哪家好广州seo排名外包
  • 淘宝客网站域名谁会做新产品宣传推广策划方案
  • 常州高端网站建设网络营销管理系统
  • 网站建设模板坏处武汉大学人民医院光谷院区
  • 自建网站营销是什么软文大全
  • discuz做的网站网站怎么优化排名
  • 中央两学一做专题网站新乡网站优化公司推荐
  • 网站源码提取百度渠道开户哪里找
  • 武汉网站建设 汉街semseo
  • 石家庄做网站电话吉林seo基础
  • 个人摄影网站模版网站优化 推广
  • 做长尾词优化去哪些网站哪个软件可以自动排名
  • 阿里云oss做网站备份优秀软文案例
  • 天津市住建网邯郸seo营销
  • tp框架做的网站外链火
  • 网站域名备案号查询推推蛙网站诊断
  • 上海建设厅焊工证查询网站深圳小程序开发公司
  • 电子平台网站孝感seo
  • 知名网站建设公司排名网络广告推广方式
  • 政府网站平台建设与管理办法p2p万能搜索引擎
  • 做男女的那个视频网站网址大全网站
  • 企业手机版网站国际网站平台有哪些
  • 关于做网站的问卷调查seo网站推广可以自己搞吗
  • 一家专门做直销的网站网站模板库