当前位置: 首页 > news >正文

网站优化文档专业网站建设

网站优化文档,专业网站建设,小视频的网站怎么做的,建设公司企业简介在算法竞赛与日常编程中,前缀和是一种极为实用的预处理技巧,能显著提升处理区间和问题的效率。今天,我们就来深入剖析一维前缀和与二维前缀和这两个经典模板。 一、【模板】一维前缀和 题目描述 给定一个长度为 n n n 的整数数组 a a a&…

在算法竞赛与日常编程中,前缀和是一种极为实用的预处理技巧,能显著提升处理区间和问题的效率。今天,我们就来深入剖析一维前缀和与二维前缀和这两个经典模板。

一、【模板】一维前缀和

题目描述

给定一个长度为 n n n 的整数数组 a a a,我们需要完成以下两个任务:

  1. 预处理数组,得到前缀和数组。
  2. 能够快速查询数组中任意区间 [ l , r ] [l, r] [l,r] 0 ≤ l ≤ r < n 0 \leq l \leq r < n 0lr<n)内所有元素的和。

算法原理

一维前缀和的核心思想是预先计算数组中每个位置之前所有元素的总和。设前缀和数组为 s s s,其中 s [ i ] s[i] s[i] 表示数组 a a a 中前 i i i 个元素的和( i i i 1 1 1 开始),那么有递推公式:
[s[i] = s[i - 1]+a[i - 1]]
这里 s [ 0 ] = 0 s[0]=0 s[0]=0,是为了方便处理边界情况。

当我们需要查询区间 [ l , r ] [l, r] [l,r] 的和时,根据前缀和的性质,该区间的和可以通过 s [ r + 1 ] − s [ l ] s[r + 1]-s[l] s[r+1]s[l] 快速得到。这是因为 s [ r + 1 ] s[r + 1] s[r+1] 包含了前 r + 1 r + 1 r+1 个元素的和, s [ l ] s[l] s[l] 包含了前 l l l 个元素的和,两者相减就得到了区间 [ l , r ] [l, r] [l,r] 的和。

在这里插入图片描述

在这里插入图片描述

C++ 代码实现

#include <iostream>
#include <vector>using namespace std;// 计算一维前缀和数组
vector<int> calculatePrefixSum(const vector<int>& a) {int n = a.size();vector<int> s(n + 1, 0);for (int i = 1; i <= n; ++i) {s[i] = s[i - 1] + a[i - 1];}return s;
}// 查询区间 [l, r] 的和
int querySum(const vector<int>& s, int l, int r) {return s[r + 1] - s[l];
}int main() {vector<int> a = {1, 2, 3, 4, 5};vector<int> s = calculatePrefixSum(a);int l = 1, r = 3;cout << "The sum of the interval [" << l << ", " << r << "] is: " << querySum(s, l, r) << endl;return 0;
}

复杂度分析

  • 时间复杂度:计算前缀和数组的时间复杂度为 O ( n ) O(n) O(n),因为需要遍历数组一次。每次查询区间和的时间复杂度为 O ( 1 ) O(1) O(1),这使得在多次查询的场景下,一维前缀和算法具有很高的效率。
  • 空间复杂度:需要额外的长度为 n + 1 n + 1 n+1 的数组来存储前缀和,因此空间复杂度为 O ( n ) O(n) O(n)

二、【模板】二维前缀和

题目描述

给定一个 m × n m \times n m×n 的二维整数矩阵 A A A,我们要完成以下任务:

  1. 预处理矩阵,得到二维前缀和矩阵。
  2. 能够快速查询矩阵中任意子矩阵 [ ( x 1 , y 1 ) , ( x 2 , y 2 ) ] [(x_1, y_1), (x_2, y_2)] [(x1,y1),(x2,y2)] 0 ≤ x 1 ≤ x 2 < m 0 \leq x_1 \leq x_2 < m 0x1x2<m 0 ≤ y 1 ≤ y 2 < n 0 \leq y_1 \leq y_2 < n 0y1y2<n)内所有元素的和。

算法原理

对于二维前缀和,我们定义 S [ i ] [ j ] S[i][j] S[i][j] 表示矩阵 A A A 中从左上角 ( 0 , 0 ) (0, 0) (0,0) 到右下角 ( i − 1 , j − 1 ) (i - 1, j - 1) (i1,j1) 这个子矩阵内所有元素的和( i i i j j j 1 1 1 开始)。其递推公式如下:
S [ i ] [ j ] = S [ i − 1 ] [ j ] + S [ i ] [ j − 1 ] − S [ i − 1 ] [ j − 1 ] + A [ i − 1 ] [ j − 1 ] S[i][j]=S[i - 1][j]+S[i][j - 1]-S[i - 1][j - 1]+A[i - 1][j - 1] S[i][j]=S[i1][j]+S[i][j1]S[i1][j1]+A[i1][j1]
这里减去 S [ i − 1 ] [ j − 1 ] S[i - 1][j - 1] S[i1][j1] 是为了避免重复计算。

当查询子矩阵 [ ( x 1 , y 1 ) , ( x 2 , y 2 ) ] [(x_1, y_1), (x_2, y_2)] [(x1,y1),(x2,y2)] 的和时,公式为:
s u m = S [ x 2 + 1 ] [ y 2 + 1 ] − S [ x 1 ] [ y 2 + 1 ] − S [ x 2 + 1 ] [ y 1 ] + S [ x 1 ] [ y 1 ] sum = S[x_2 + 1][y_2 + 1]-S[x_1][y_2 + 1]-S[x_2 + 1][y_1]+S[x_1][y_1] sum=S[x2+1][y2+1]S[x1][y2+1]S[x2+1][y1]+S[x1][y1]

在这里插入图片描述

在这里插入图片描述

C++ 代码实现

#include <iostream>
#include <vector>using namespace std;// 计算二维前缀和矩阵
vector<vector<int>> calculateTwoDPrefixSum(const vector<vector<int>>& A) {int m = A.size();int n = A[0].size();vector<vector<int>> S(m + 1, vector<int>(n + 1, 0));for (int i = 1; i <= m; ++i) {for (int j = 1; j <= n; ++j) {S[i][j] = S[i - 1][j] + S[i][j - 1] - S[i - 1][j - 1] + A[i - 1][j - 1];}}return S;
}// 查询子矩阵 [(x1, y1), (x2, y2)] 的和
int queryTwoDSum(const vector<vector<int>>& S, int x1, int y1, int x2, int y2) {return S[x2 + 1][y2 + 1] - S[x1][y2 + 1] - S[x2 + 1][y1] + S[x1][y1];
}int main() {vector<vector<int>> A = {{1, 2, 3},{4, 5, 6},{7, 8, 9}};vector<vector<int>> S = calculateTwoDPrefixSum(A);int x1 = 0, y1 = 0, x2 = 1, y2 = 1;cout << "The sum of the sub - matrix [(" << x1 << ", " << y1 << "), (" << x2 << ", " << y2 << ")] is: "<< queryTwoDSum(S, x1, y1, x2, y2) << endl;return 0;
}

复杂度分析

  • 时间复杂度:计算二维前缀和矩阵需要两层嵌套循环遍历矩阵,时间复杂度为 O ( m × n ) O(m \times n) O(m×n)。每次查询子矩阵和的时间复杂度为 O ( 1 ) O(1) O(1),这使得在多次查询子矩阵和的场景下,二维前缀和算法非常高效。
  • 空间复杂度:需要额外的 ( m + 1 ) × ( n + 1 ) (m + 1)\times(n + 1) (m+1)×(n+1) 大小的矩阵来存储二维前缀和,因此空间复杂度为 O ( m × n ) O(m \times n) O(m×n)

通过以上的讲解和代码实现,我们可以看到前缀和算法在处理区间和与子矩阵和问题时的强大威力。它通过预处理的方式,将原本可能需要 O ( n ) O(n) O(n) O ( m × n ) O(m\times n) O(m×n) 时间复杂度的查询操作优化到了 O ( 1 ) O(1) O(1),在实际应用中能显著提升程序的性能。希望大家能够熟练掌握这两个模板,并在后续的算法学习和实践中灵活运用。

http://www.tj-hxxt.cn/news/658.html

相关文章:

  • 网站怎么做能快速有排名365优化大师软件下载
  • 北京网站建设站建设百度搜索排行
  • 辽宁省住房建设厅网站网站seo检测
  • 凡客诚品官方网站查询小红书搜索关键词排名
  • 知名门户网站淘宝关键词指数
  • 郴州市住房和城乡建设厅网站请输入搜索关键词
  • 网站建设误区微信搜索seo优化
  • 上饶专业做网站建设网页开发用什么软件
  • 哪个公司建网站关键词查询神器
  • 怎么用手机做抖音上最火的表白网站百度竞价排名规则及费用
  • 文山建设5G网站seo课程哪个好
  • 厦门哪家公司做网站新闻头条今天最新消息
  • 有关做美食的网站有哪些软文写作技巧及范文
  • 携程网站建设进度及实施过程查权重工具
  • 可以做单的猎头网站深圳aso优化
  • wordpress 百家号插件泰州网站排名seo
  • 广州正规网站建设短视频代运营公司
  • 在网上怎么赚钱seo优化一般包括哪些内容()
  • 买程序做网站可靠吗有哪些网站可以免费推广
  • 建网站系统搜狗网址
  • 国家工程建设标准化协会网站深圳百度推广竞价托管
  • 网站开发设计开题报告广安网站seo
  • 大屏网页设计网站谷歌搜索引擎入口363
  • 网站优化系统苏州seo公司
  • 网站开发怎么连接sqlserver抖音关键词搜索指数
  • 外贸电商平台排行榜seo快速入门教程
  • 视频网站的建设预算注册百度账号
  • wordpress 表格数据seo页面排名优化
  • 现在的网站怎样做推广亚洲卫星电视网参数表
  • 黑龙江省建设教育协会网站首页播放量自助下单平台