当前位置: 首页 > news >正文

wordpress怎么修改首页网址导航沧州seo包年优化软件排名

wordpress怎么修改首页网址导航,沧州seo包年优化软件排名,新科网站建设,wordpress判断是否是子分类一、简介 本文介绍了蒙特卡洛积分算法的基本原理和其误差计算。 二、蒙特卡洛积分介绍 1. 介绍 蒙特卡洛积分算法是一种数值积分算法,用于对复杂函数进行积分。 例如,对于目标积分函数: ∫ a b f ( x ) d x (1) \int_{a}^{b}f(x)\rm{d}x…

一、简介

本文介绍了蒙特卡洛积分算法的基本原理和其误差计算。

二、蒙特卡洛积分介绍

1. 介绍

蒙特卡洛积分算法是一种数值积分算法,用于对复杂函数进行积分。
例如,对于目标积分函数:
∫ a b f ( x ) d x (1) \int_{a}^{b}f(x)\rm{d}x \tag{1} abf(x)dx(1)
其中 f ( x ) f(x) f(x)很复杂,无法找到解析解。我们可以在 f ( x ) f(x) f(x)的定义域 [ a , b ] [a,b] [a,b]上按照任意的概率密度函数 p ( x ) p(x) p(x)进行采样。并统计采样的随机变量的样本期望:
F N = 1 N ∑ i = 1 N f ( x i ) p ( x i ) (2) F_N = \frac{1}{N}\sum_{i=1}^{N}\frac{f(x_{i})}{p(x_{i})} \tag{2} FN=N1i=1Np(xi)f(xi)(2)
可以保证:
E ( F N ) = ∫ a b f ( x ) d x (3) E(F_N)=\int_{a}^{b}f(x)\rm{d}x \tag{3} E(FN)=abf(x)dx(3)

2. 证明

下面证明公式(3)的正确性:
E ( F N ) = E ( 1 N ∑ i = 1 N f ( x i ) p ( x i ) ) = 1 N ∑ i = 1 i = N E ( f ( x i ) p ( x i ) ) E(F_N) = E(\frac{1}{N}\sum_{i=1}^{N}\frac{f(x_{i})}{p(x_{i})}) \\ =\frac{1}{N}\sum_{i=1}^{i=N}E(\frac{f(x_i)}{p(x_{i})}) E(FN)=E(N1i=1Np(xi)f(xi))=N1i=1i=NE(p(xi)f(xi))
我们令 g ( x ) = f ( x ) p ( x ) g(x)=\frac{f(x)}{p(x)} g(x)=p(x)f(x),那么
E ( F N ) = 1 N ∑ i = 1 i = N E ( g ( x ) ) = 1 N ∗ N ∗ ∫ g ( x ) ∗ p ( x ) d x = ∫ g ( x ) ∗ p ( x ) d x = ∫ f ( x ) d x (4) E(F_N)=\frac{1}{N}\sum_{i=1}^{i=N}E(g(x)) \\ =\frac{1}{N}*N* \int_{}^{}g(x)*p(x){\rm{d}x} \\ = \int{g(x)*p(x)}{\rm{d}}x \\ =\int{f(x)}{\rm{d}x} \tag{4} E(FN)=N1i=1i=NE(g(x))=N1Ng(x)p(x)dx=g(x)p(x)dx=f(x)dx(4)
求证得证。

三、蒙特卡洛积分方差

蒙特卡洛积分算法的收敛程度可以适用其方差(标准差)表示。若其方差收敛速度很快,说明该算法可以适用较少的采样值,得到较高的积分精度,反则反之。下面对蒙特卡积分算法的方差和标准差进行计算。
下面计算蒙特卡洛积分算法的方差:
δ 2 ( F N ) = δ 2 ( 1 N ∗ ∑ i = 1 1 = N ( f ( x ) p ( x ) ) ) (5) \delta^{2}(F_N) = \delta^{2}(\frac{1}{N}*\sum_{i=1}^{1=N}(\frac{f(x)}{p(x)})) \tag{5} δ2(FN)=δ2(N1i=11=N(p(x)f(x)))(5)
根据方差的性质:
δ 2 ( c ∗ X ) = c 2 ∗ δ 2 ( X ) δ 2 ( a ∗ X + b ∗ Y ) = a 2 δ 2 ( X ) + b 2 δ 2 ( Y ) + 2 a b ∗ C O V ( X , Y ) (6) \delta^{2}(c*X) = c^{2}*\delta^{2}(X) \\ \delta^{2}(a*X+b*Y)=a^2\delta^{2}(X)+b^2\delta^{2}(Y)+2ab*COV(X,Y) \tag{6} δ2(cX)=c2δ2(X)δ2(aX+bY)=a2δ2(X)+b2δ2(Y)+2abCOV(X,Y)(6)
又因为采样的随机变量 x i x_i xi相互独立,因此:
δ 2 ( F N ) = δ 2 ( 1 N ∗ ∑ i = 1 1 = N ( f ( x ) p ( x ) ) ) = 1 N 2 ∗ ∑ i = 1 i = N δ 2 ( f ( x ) p ( x ) ) = 1 N ∗ δ 2 ( f ( x ) p ( x ) ) (7) \delta^{2}(F_N) = \delta^{2}(\frac{1}{N}*\sum_{i=1}^{1=N}(\frac{f(x)}{p(x)})) \\ =\frac{1}{N^2}*\sum_{i=1}^{i=N}\delta^{2}(\frac{f(x)}{p(x)}) \\ =\frac{1}{N}*\delta^{2}(\frac{f(x)}{p(x)}) \tag{7} δ2(FN)=δ2(N1i=11=N(p(x)f(x)))=N21i=1i=Nδ2(p(x)f(x))=N1δ2(p(x)f(x))(7)
工具公式(7)可知,蒙特卡罗积分方法的方差与采样数 N N N成反比,与 δ 2 ( f ( x ) p ( x ) ) \delta^{2}(\frac{f(x)}{p(x)}) δ2(p(x)f(x))成正比。
为了得到更为准确的结果,一方面我们可以增加采样数,即增大 N N N
另一方面我们可以尽可能地令 δ 2 ( f ( x ) p ( x ) ) \delta^{2}(\frac{f(x)}{p(x)}) δ2(p(x)f(x))小一些,由于 f ( x ) f(x) f(x)是我们待求的积分函数,无法进行修改,因此我们可以寻找一个概率密度函数 p ( x ) p(x) p(x),使得 f ( x ) p ( x ) \frac{f(x)}{p(x)} p(x)f(x)的方差尽可能的小。

四、蒙特卡洛积分与差分积分

蒙特卡洛积分和差分积分都是数值积分方法。
与差分积分方法相比,蒙特卡洛方法的计算复杂度与维度无关。它通过随机采样的方式估计积分值,即使维度增加,样本点的生成和积分估计的计算量并不会指数级增长。这意味着蒙特卡洛方法在高维问题中仍然保持高效,具有稳定的性能。
而在差分积分方法中,每增加一个维度,划分的区域数量会大幅增加,使得差分积分方法的计算复杂度呈指数级增长。

http://www.tj-hxxt.cn/news/56963.html

相关文章:

  • 网站建设创业计划书百度广告收费
  • 伊春网络运营推广seo专员是什么职业
  • wordpress文章中带轮播图网站排名优化快速
  • Web网站开发项目营销培训视频课程免费
  • 做水果的网站有哪些seo推广工具
  • 新网站备案百度竞价价格查询
  • 还有哪些网站可以做淘宝活动吗站长平台百度
  • 做网站百科aso优化方法
  • 小网站建设公司排名选择宁波seo优化公司
  • 天津网站优化建设万词优化
  • 哪个网站可以做视频外链seo导航站
  • 大型网站建设需要个人如何做网络推广
  • 网站分类目录大全杭州网站seo推广
  • 建网站要多少钱一台考拉seo
  • 高端网站建设 案例苏州seo网站推广哪家好
  • WordPress建立电商网站日结app推广联盟
  • 做三角渐变用哪个网站章鱼磁力链接引擎
  • 网站管理难做吗网站数据统计
  • 广州b2c网站设计公司seo搜索引擎优化怎么优化
  • 枣庄网站建设哪家好网站建立的步骤
  • 黑河北京网站建设南通百度网站快速优化
  • 广州网站(建设信科网络)seo怎么做教程
  • logo一键生成器哪个好dz论坛如何seo
  • 观点网站快速建网站
  • 莆田网站设计重庆网站制作系统
  • 在线ps图片编辑器seo点击排名器
  • 百度网站关键字搜索怎么做有友情链接的网站
  • 淘宝网站怎么做视频南沙seo培训
  • 企业形象网站建设意义青岛网站制作
  • 网站是否必须做可信网站认证网络服务商