当前位置: 首页 > news >正文

南京建企业网站哪家好成都网多多

南京建企业网站哪家好,成都网多多,公司转让合同,tengine wordpress全文链接:http://tecdat.cn/?p31162 最近我们被客户要求撰写关于SV模型的研究报告,包括一些图形和统计输出(点击文末“阅读原文”获取完整代码数据)。 相关视频 本文做SV模型,选取马尔可夫蒙特卡罗法(MCMC)、正则化广…

全文链接:http://tecdat.cn/?p=31162

最近我们被客户要求撰写关于SV模型的研究报告,包括一些图形和统计输出点击文末“阅读原文”获取完整代码数据)。

相关视频

本文做SV模型,选取马尔可夫蒙特卡罗法(MCMC)、正则化广义矩估计法和准最大似然估计法估计。

模拟SV模型的估计方法:

sim <- svsim(1000,mu=-9, phi = 0.97, sigma = 0.15)print(sim)summary(sim)

ef4b320fd170a150efac30e1913ebad8.png

plot(sim)

d6de3d1257932ac36c67b2c9a5f76b80.png

绘制上证指数收益时间序列图、散点图、自相关图与偏自相关图

我们选取上证指数5分钟高频数据:

data=read.csv("上证指数-5min.csv",header=TRUE)
#open:开盘价  close:收盘价 vol:成交量 amount:成交额
head(data,5)  #观察数据的头5行
tail(data,5)  #观察数据的最后5行
Close.ptd<-data$close
Close.rtd<-diff(log(Close.ptd))  #指标一:logReturn
rets=diff(data$close)/data$close[-length(data$close)]  #指标二:Daily Returns,我们选择Daily Returns
library(tseries)
adf.test(rets)## 绘制上证指数收益时间序列图、散点图、自相关图与偏自相关图
Close.ptd.ts<-ts(Close.ptd,start=c(2005,1,4),freq=242)  
plot(Close.ptd.ts, type="l",main="(a) 上证指数日收盘价序列图",acf(Close.rtd,main='',xlab='Lag',ylab='ACF',las=1)    
title(main='(b) 上证指数收益率自相关检验',cex.main=0.95)pacf(Close.rtd,main='',xlab='Lag',ylab='PACF',las=1)               
title(main='(c) 上证指数收益率偏自相关检验',cex.main=0.95)
def.off## Q-Q图、经验累积分布ecdf图、密度图、直方图 
qqnorm(Close.rtd,main="(a) 上证指数收益率Q-Q图",cex.main=0.95,xlab='理论分位数',ylab='样本分位数')            
qqline(Close.rtd)                                 
#经验累积分布ecdf图
plot(ECD,lwd = 2,main="(b) 上证指数收益率累积分布函数图",cex.main=0.95,las=1) 
xx <- unique(sort(c(seq(-3, 2, length=24), knots(ECD))))         
abline(v = knots(ECD), lty=2, col='gray70')                           
x1 <- c((-4):3)             # 设定区间范围
lines(x1,pnorm(x1,mean(Close.rtdC[1:10]),sd(Close.rtd[1:10])))  
#密度图
plot(D, main="(c) 上证指数核密度曲线图 ",xlab="收益", ylab='密度',xlim = c(-7,7), ylim=c(0,0.5),cex.main=0.95)       
polygon(D, col="gray", border="black")                 
curve(dnorm,lty = 2, add = TRUE)                        lines(x2,dnorm(x2,mean=0,sd=1))      
abline(v=0,lty = 3)                                     
legend("topright", legend=c("核密度","正态密度"),lty=c(1,2),cex=0.5)
#直方图
hist(Close.rtd[1:100],xaxt='n',main='(d) 上证指数收益率直方图',xlab='收益/100',ylab='密度', freq=F,cex.main=0.95,las=1)        
lines(x2,dnorm(x2,mean(Close.rtd[1:100]),sd(Close.rtd[1:100]))) 
axis(1,at=axTicks(1),labels = as.integer(axTicks(1))/100 )

736daffad7936c14765db0917ee3fef2.png

c0397bd076db103878d427d265198852.png

b4cb1efff6a5688f3c795e802f9453df.png


点击标题查阅往期内容

9964e26614fc7a8ed8a82030cc7f296f.jpeg

【视频】随机波动率SV模型原理和Python对标普SP500股票指数预测|数据分享

outside_default.png

左右滑动查看更多

outside_default.png

01

d2f58cdc97e0497cb1a8a072e55df57d.png

02

5744e95c151ee2af12130a37f1ab3eb6.png

03

e513a923d19da09ed976979f24fe441d.png

04

fc3035a60701d647b9ba541c88e0d66a.png

SV模型

{N <- length(logReturn)mu <- (1/N)*sum(logReturn)sqrt((1/N) * sum((logReturn - mu)^2))
}return=-1.5*log(h)-y^2/(2*h)-(log(h)-mu)^2/(2*sigma2)
}

马尔可夫链蒙特卡罗估计

该模型使用了Kastner和Fruhwirth-Schnatter所描述的算法。使用的R代码是:

###Markov Chain Monte Carlosummary(mcmc)

5e8f914dafd3bb3b6a323a592a1bb834.png

准最大似然估计

SV模型可以用QML方法在R中用许多不同的状态空间和Kalman滤波包来估计。

a0=c(parm[1])P0=matrix(parm[3]^2/(1-parm[2]^2))dt=matrix(parm[1]*(1-parm[2]))ct=matrix(-1.27)Tt=matrix(parm[2])Zt=matrix(1)HHt=matrix(parm[3]^2)GGt=matrix(pi^2/2)ans<-fkf(a0=sp$a0,P0=sp$P0,dt=sp$dt,ct=sp$ct,Tt=sp$Tt,Zt=sp$Zt,HHt=sp$HHt,GG

b3439ac0efbf00e45968a191990588ac.png

正则化广义矩阵

在R函数中定义矩条件,然后估计参数0。

moments <- c (m1 = sqrt(2/pi)*exp(mu/2 + sig2h/8),m2 = exp(mu +  sig2h/2 ) ,m3 = 2*sqrt ( 2/pi ) * exp( 3*mu/2 + 9*sig2h/8 ) ,gmm(g = sv.moments , x =rets , t0=c(mu=-10, phi=0.9,sigmaeta= 0.2),

2da2330ce70501db7554cdd0680049b0.png


c8838981c3e30ffa4f412f33c5692bc9.png

点击文末“阅读原文”

获取全文完整代码数据资料。

本文选自《R语言随机波动模型SV:马尔可夫蒙特卡罗法MCMC、正则化广义矩估计和准最大似然估计上证指数收益时间序列》。

点击标题查阅往期内容

HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率

Matlab马尔可夫链蒙特卡罗法(MCMC)估计随机波动率(SV,Stochastic Volatility) 模型

R语言隐马尔可夫模型HMM连续序列重要性重抽样CSIR估计随机波动率模型SV分析股票收益率时间序列

马尔可夫Markov区制转移模型分析基金利率

马尔可夫区制转移模型Markov regime switching

时变马尔可夫区制转换MRS自回归模型分析经济时间序列

马尔可夫转换模型研究交通伤亡人数事故时间序列预测

如何实现马尔可夫链蒙特卡罗MCMC模型、Metropolis算法?

Matlab用BUGS马尔可夫区制转换Markov switching随机波动率模型、序列蒙特卡罗SMC、M H采样分析时间序列

R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机波动率SV模型、粒子滤波、Metropolis Hasting采样时间序列分析

matlab用马尔可夫链蒙特卡罗 (MCMC) 的Logistic逻辑回归模型分析汽车实验数据

stata马尔可夫Markov区制转移模型分析基金利率

PYTHON用时变马尔可夫区制转换(MRS)自回归模型分析经济时间序列

R语言使用马尔可夫链对营销中的渠道归因建模

matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计

R语言隐马尔可夫模型HMM识别不断变化的股票市场条件

R语言中的隐马尔可夫HMM模型实例

用机器学习识别不断变化的股市状况—隐马尔科夫模型(HMM)

Matlab马尔可夫链蒙特卡罗法(MCMC)估计随机波动率(SV,Stochastic Volatility) 模型

MATLAB中的马尔可夫区制转移(Markov regime switching)模型

Matlab马尔可夫区制转换动态回归模型估计GDP增长率

R语言马尔可夫区制转移模型Markov regime switching

stata马尔可夫Markov区制转移模型分析基金利率

R语言如何做马尔可夫转换模型markov switching model

R语言隐马尔可夫模型HMM识别股市变化分析报告

R语言中实现马尔可夫链蒙特卡罗MCMC模型

384d655c4e75854c2ae3ec8afe1e1acf.png

a06b2ff1f5cb81a2df13dc151527557f.jpeg

8bd21994c71d4d2cdd7c564cb3c29370.png

http://www.tj-hxxt.cn/news/52275.html

相关文章:

  • 微官网 入口网络seo推广
  • 实名网站空间哪里买产品推广ppt范例
  • 网站开发与网站制作品牌营销推广方案
  • 大连网站开发乛薇上海seo优化公司 kinglink
  • 个人主页网页设计作品欣赏网站seo如何优化
  • 合肥品牌网站中国十大经典广告
  • 南宁做网站北京网络推广优化公司
  • 网站集约化建设做法网站开发公司哪家好
  • 腾讯的网站是谁做的手机优化大师
  • 盂县在线这个网站是谁做的软文广告
  • 学校的网站开发过程专业地推团队电话
  • 做b站类似的网站网站百度手机端排名怎么查询
  • 邢台做网站优化哪儿好百度搜索收录
  • 适合做资源站wordpress主题seo系统优化
  • 外贸seo博客刷seo快速排名
  • 建立网站的请示jsurl转码
  • wordpress免费网站模板下载行业数据统计网站
  • wordpress 多站点 子目录seo顾问赚钱吗
  • 求一个做美食视频的网站新冠咳嗽一般要咳多少天
  • 网站建设的一般费用站长素材音效下载
  • 关于建设网站的毕业论文西安seo教程
  • 怎么做类似淘宝网站吗新区seo整站优化公司
  • 布吉网站建设价格谷歌paypal下载
  • 网络营销个人网站地推拉新接单网
  • 我县政府网站建设发展状况百度2022新版下载
  • wordpress取消自动更新宁波厂家关键词优化
  • 公司注册好了怎么做网站西安百度推广开户多少钱
  • 哪个网站可以兼职做效果图pageadmin建站系统
  • 最好的自助建站系统100种找客户的方法
  • 网站空间带宽短视频代运营方案策划书