当前位置: 首页 > news >正文

织梦更换网站模板怎么在百度发布自己的文章

织梦更换网站模板,怎么在百度发布自己的文章,网站网站怎么定位,网站做ppt模板文章目录 裸题:904. 虫洞01分数规划:361. 观光奶牛特殊建图与01分数规划trick:1165. 单词环 裸题:904. 虫洞 904. 虫洞 - AcWing题库 // 虫洞是负权且单向边,道路是正权且双向边,题目较裸,判…

文章目录

      • 裸题:904. 虫洞
      • 01分数规划:361. 观光奶牛
      • 特殊建图与01分数规划+trick:1165. 单词环

裸题:904. 虫洞

904. 虫洞 - AcWing题库
image.png

// 虫洞是负权且单向边,道路是正权且双向边,题目较裸,判断有无负环即可
#include <iostream>
#include <cstring>
using namespace std;const int N = 510, M = 6010;
int h[N], e[M], ne[M], w[M], idx;
int n, m, k;
int dis[N], cnt[N];
int q[N];
bool st[N];void add(int x, int y, int d)
{e[idx] = y, ne[idx] = h[x], w[idx] = d, h[x] = idx ++ ;
}bool spfa()
{int tt = 0, hh = 0;memset(cnt, 0, sizeof(cnt));memset(dis, 0, sizeof(dis));memset(st, 0, sizeof(st));for (int i = 1; i <= n; ++ i ) st[i] = true, q[tt ++ ] = i;while (hh != tt){int x = q[hh ++ ];if (hh == N) hh = 0;st[x] = false;for (int i = h[x]; i != -1; i = ne[i]){int y = e[i];if (dis[y] > dis[x] + w[i]){cnt[y] = cnt[x] + 1;if (cnt[y] >= n) return true;dis[y] = dis[x] + w[i];if (!st[y]) {st[y] = true;q[tt ++ ] = y;if (tt == N) tt = 0;}}}}return false;
}int main()
{int T;scanf("%d", &T);while (T -- ){memset(h, -1, sizeof(h));idx = 0;scanf("%d%d%d", &n, &m, &k);int x, y, d;for (int i = 0; i < m; ++ i ){scanf("%d%d%d", &x, &y, &d);add(x, y, d), add(y, x, d);}for (int i = 0; i < k; ++ i ){scanf("%d%d%d", &x, &y, &d);add(x, y, -d);}if (spfa()) puts("YES");else puts("NO");}return 0;
}

image.png
这个==真的服,调半天,还有,邻接表的大小又设置错了


01分数规划:361. 观光奶牛

361. 观光奶牛 - AcWing题库
image.png

在图论问题中,所有形如:某个部分之和除以某个部分之和最大的问题,被称为01分数规划,通常使用二分解决这类问题
根据题意,这道题的答案范围在 ( 0 , 1000 ] (0, 1000] (0,1000]中,我们需要二分这个区间找到答案
若点权之和/边权之和大于等于mid,则说明答案在 [ m i d , r ] [mid, r] [mid,r]之间
反之,点权之和/边权小于mid,则说明答案在 [ l , m i d ] [l, mid] [l,mid]之间
根据这个二段性,我们能二分出ans,使得边权之和/边权之和的最大值 = ans

现在的问题是check如何实现?
整理不等式,如下图:
image.png

一个常用的技巧:若图中的环既有点权又有边权,那么可以将点权加到出边或者入边上
那么不等式的求和可以提到外面,结合这个技巧,将点权和边权结合
若一条边由x->y,权值为w,那么将其权值设置为 f x − m i d ∗ w f_x-mid*w fxmidw f x f_x fx为x的点权
问题就转换成了图中是否存在一个正环?
求正环只要修改三角不等式即可:dis[y] < dis[x] + w[i]

总结下:check判断图中是否存在一个环,其点权之和/边权之和大于等于mid,转换成图中是否存在一个正环(或权值和为0的环),若存在,则l = mid,否则r = mid,

  1. 思考题目的二段性
  2. 根据不等式重置边/点权
  3. 根据不等式判断题目的具体问题:负环/最小生成树/最短路
#include <iostream>
#include <cstring>
using namespace std;const int N = 1010, M = 5010;
int h[N], e[M], ne[M], w[M], idx;
int f[N];
double dis[N];
int cnt[N]; bool st[N];
int q[N];int n, m;void add(int x, int y, int d)
{e[idx] = y, ne[idx] = h[x], w[idx] = d, h[x] = idx ++ ;
}bool check(double mid)
{memset(dis, 0, sizeof(dis));memset(cnt, 0, sizeof(cnt));int tt = 0, hh = 0;for (int i = 1; i <= n; ++ i ) st[i] = true, q[tt ++ ] = i;while (hh != tt){int x = q[hh ++ ];if (hh == N) hh = 0;st[x] = false;for (int i = h[x]; i != -1; i = ne[i]){int y = e[i];if (dis[y] <= dis[x] + f[x] - mid * w[i]){dis[y] = dis[x] + f[x] - mid * w[i];cnt[y] = cnt[x] + 1;if (cnt[y] >= n) return true;if(!st[y]){st[y] = true;q[tt ++ ] = y;if (tt == N) tt = 0;}}}}return false;
}int main()
{memset(h, -1, sizeof(h));scanf("%d%d", &n, &m);for (int i = 1; i <= n; ++ i ) scanf("%d", &f[i]);int x, y, d;for (int i = 0; i < m; ++ i ){scanf("%d%d%d", &x, &y, &d);add(x, y, d);}double l = 0, r = 1000;while (r - l > 1e-4){double mid = (l + r) / 2;if (check(mid)) l = mid;else r = mid;}printf("%.2lf\n", r);return 0;
}

debug:点权需要从数组1号下标开始读取


特殊建图与01分数规划+trick:1165. 单词环

1165. 单词环 - AcWing题库
image.png

估算一下这题的数据量,如果按照题意建图,不仅爆空间还会爆时间,所以这题需要考虑其他建图方式
image.png

题目给定的建图方式是:单词为点,若两单词能相连,那么边的权值为1
考虑新的建图方式,以单词的前两个字符为起点,最后两个字符为终点,建立一条有向边,权值为单词的长度。这种建图方式中,点的数量最多为26 * 26,边的数量为 1 0 5 10^5 105

其次,题目要求环中所有单词的长度之和 / 环中的单词数量最大,显然是01分数规划
二分答案,答案的范围是 ( 0 , 1000 ] (0, 1000] (0,1000],最大的答案为每个单词长度都是1000,而最小的答案0是取不到的,最小的情况应该是1,0用来表示无解
整理不等式,重新设置边权为 w i − 1 ∗ m i d w_i - 1 * mid wi1mid,1是由环中点的数量累加后(第二个式子)再把累加提到外面(第三个等式)得到的
check:每次根据mid判断图中是否存在正环或零环,若存在返回true,反之返回false

trick:如果spfa更新了很多次还没有结束循环,那么有极大概率可以认为图中存在环,这里设置阈值为10000(点数的十几倍),当循环次数超过该值时,直接认为图中存在环、
不过这样的trick在正规比赛中不会出现

#include <iostream>
#include <cstring>
using namespace std;const int N = 27 * 27, M = 1e5 + 10;
int h[N], e[M], ne[M], w[M], idx;
double dis[N];
int cnt[N], q[N];
bool st[N];void add(int x, int y, int d)
{e[idx] = y, ne[idx] = h[x], w[idx] = d, h[x] = idx ++ ;
}bool check(double mid)
{memset(dis, 0, sizeof(dis));memset(cnt, 0, sizeof(cnt));int tt = 0, hh = 0, count = 0;for (int i = 0; i < N - 1; ++ i ) q[tt ++ ] = i, st[i] = true;while (hh != tt ){int x = q[hh ++ ];if (hh == N) hh = 0;st[x] = false;for (int i = h[x]; i != -1; i = ne[i]){int y = e[i];if (dis[y] <= dis[x] + w[i] - mid){cnt[y] = cnt[x] + 1;if (cnt[y] >= N) return true;if (++ count >= 10000) return true;dis[y] = dis[x] + w[i] - mid;if (!st[y]){st[y] = true;q[tt ++ ] = y;if (tt == N) tt = 0;}}}}return false;
}int main()
{int m;char str[1010];while (scanf("%d", &m), m){memset(h, -1, sizeof(h));idx = 0;for (int i = 0; i < m; ++ i ){scanf("%s", str);int len = strlen(str);if (len >= 2){int x = (str[0] - 'a') * 26 + str[1] - 'a';int y = (str[len - 2] - 'a') * 26 + str[len - 1] - 'a';add(x, y, len);}}double l = 0, r = 1000;while (r - l > 1e-4){double mid = (l + r) / 2;if (check(mid)) l = mid;else r = mid;}if (r < 1e-4) puts("No solution");else printf("%.2lf\n", r);}return 0;
}

debug:dis数组的类型开成int,想着边的权值为整数,int就行,然而边权被重置,类型是浮点数

http://www.tj-hxxt.cn/news/47546.html

相关文章:

  • 肇庆高端品牌网站建设网站seo推广公司靠谱吗
  • 成都网站建设 3e网络互联网销售是什么意思
  • 虚拟机怎么做多个网站网络推广费用
  • top域名的网站打不开搜索引擎营销分类
  • 天津做网站找津坤科技专业影响seo排名的因素
  • 个人创业做网站电商数据查询平台
  • 湖北医院网站建设乔拓云网微信小程序制作
  • 网站开发项目资金运用明细百度网站收录提交入口全攻略
  • 网站建设登录注册怎么做网站优化技术
  • 建分类网站得花多少钱百度竞价开户
  • 没有网站可以做京东联盟吗市场推广方案ppt
  • 做网站也分内存大小的吗如何优化网页加载速度
  • 什么网站做的靠枕比较有创意关键词如何确定
  • 房产网站建设的功能百度问答下载安装
  • 做网站要注意什么问题seo免费优化
  • 哪个网站有做彩平的材质贴图当阳seo外包
  • 怎么做军事小视频网站杭州seo论坛
  • 网站设计收费标准长沙建站优化
  • 视频做网站近三天发生的大事
  • dede网站根目录标签全网营销系统
  • cc网站域名注册搜索引擎排名谷歌
  • 做百度手机网站点cps推广
  • 阿里云服务器配置网站宁波网站推广优化外包
  • wordpress主题idown东莞seo排名外包
  • 网站怎么做百度认证设计网站大全
  • 可以做笔试面试题的网站网络营销电子版教材
  • 自我介绍网站html山西seo推广
  • 常州制作网站微信公众号运营
  • 网络公司做网站服务器nba排名赛程
  • 嘉善网站制作产品运营推广方案