当前位置: 首页 > news >正文

做网站找哪个好互联网营销具体做什么

做网站找哪个好,互联网营销具体做什么,独立网站建设,灌云网站设计☁️主页 Nowl 🔥专栏《机器学习实战》 《机器学习》 📑君子坐而论道,少年起而行之 文章目录 神经网络 介绍 结构 基本要素 Keras 介绍 导入 定义网络 模型训练 前馈神经网络 特点 常见类型 代码示例 反馈神经网络 特点 …

☁️主页 Nowl

🔥专栏《机器学习实战》 《机器学习》

📑君子坐而论道,少年起而行之 

文章目录

神经网络

介绍

结构

基本要素

Keras

介绍

导入

定义网络

模型训练

前馈神经网络

特点

常见类型

代码示例

反馈神经网络

特点

作用

常见类型

代码示例

结语


神经网络

介绍

我们知道,深度学习也是机器学习的一个范畴,所以它满足机器学习的基本思想:从数据中拟合出某种规律,只是它的模型结构与经典机器学习的模型不同,且具有特色:它的模型结构像人脑的神经元一样连接,所以我们也把这种结构叫做神经网络

结构

由数个神经元组成一层,整个神经网络由多个层组成,最开始的层叫做输入层,最后的层叫做输出层,输入层与输出层中间的叫做隐藏层,层与层之间互相连接

基本要素

作为机器学习的一种,深度学习当然也有模型性能评估函数损失函数优化方法,神经网络还有一个激活函数的概念,这个激活函数添加到某个神经网络的层上,将输入经过某种函数变化后再输出,常见的激活函数有sigmoid,relu等,不用着急,这些概念我们在之后的系列文章中都会反复提到


Keras

介绍

本系列教程将主要使用Keras库进行讲解,Keras是一个流行的python深度学习库,在许多人工智能竞赛中使用量都居于领先地位

导入

from keras.models import Sequential # 导入Sequential 模型
from keras.layers import Dense # 导入Dense层
import numpy as np

Sequential是一种存储神经网络的模型

Dense是全连接层,每个神经元都与上一层的所有神经元相连

定义网络

model = Sequential()
model.add(Dense(6, input_dim=4, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

这行代码先创建了一个Sequential模型,然后往里面添加了两个全连接层,第一个全连接层的输入是4个神经元,这一层有6个神经元,激活函数是relu,第二个全连接层只有一个神经元,而它的输入由上一层自动判断,也就是6个神经元,激活函数是sigmoid

模型训练

# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=10, batch_size=32)

compile初始化了一些基本设置 ,定义了损失函数(loss),定义了优化器(optimizer),定义了评估模型性能的指标(metrics)

fit开始训练模型,epochs定义了训练批次,batch_size设置了每次训练提取的样本数(深度学习训练过程每次一般都是抽取训练集的一个子集,这样做往往可以提高模型训练速度)


前馈神经网络

特点

前一个神经元的输出是后一个神经元的输入,一般结构如下图所示

常见类型

感知机,全连接神经网络,深度神经网络,卷积神经网络

代码示例

from keras.models import Sequential
from keras.layers import Dense
import numpy as np# 生成一些示例数据
X = np.random.random((1000, 20))
y = np.random.randint(2, size=(1000, 1))# 定义简单的前馈神经网络
model = Sequential()
model.add(Dense(64, input_dim=20, activation='relu'))
model.add(Dense(1, activation='sigmoid'))# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=10, batch_size=32)

这段代码定义了一个最简单的前馈神经网络,整个模型结构有一个输入层(就是我们输入的数据,这个层没有添加到Sequential中),一个隐藏层,一个输出层 


反馈神经网络

特点

某一个神经元的输入不只与前一个神经元有关,而是可能与之前的所有神经元有关

作用

反馈神经网络通常用来处理序列数据,如语音,文本等,因为这些数据通常跟前后文有关,我们需要反馈神经网络的结构来记忆前后文的关系

常见类型

循环神经网络,长短时记忆网络

代码示例

from keras.models import Sequential
from keras.layers import SimpleRNN, Dense
import numpy as np# 生成一些示例数据
X = np.random.random((1000, 10, 20))  # 1000个样本,每个样本有10个时间步,每个时间步有20个特征
y = np.random.randint(2, size=(1000, 1))# 定义简单的反馈神经网络
model = Sequential()
model.add(SimpleRNN(64, input_shape=(10, 20), activation='relu'))
model.add(Dense(1, activation='sigmoid'))# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=10, batch_size=32)

这段代码定义了一个最简单的反馈神经网络,隐藏层为RNN层,设置时间步为10,这意味着数据会在RNN层循环十次后再输入到下一层

结语

对于深度学习,我们主要要了解以下几个方面

  • 神经网络中层与层的连接方式(前馈,反馈)
  • 各种神经网络层的作用(卷积层,池化层)
  • 激活函数(relu)
  • 损失函数
  • 优化方法
http://www.tj-hxxt.cn/news/46926.html

相关文章:

  • vs2019可以做网站吗百度搜索平台
  • 客户说做网站没效果微博营销策略
  • 网站建设经费网站提交
  • 做淘宝网站用什么软件有哪些内容百度搜索引擎入口登录
  • 白石龙做网站佛山网络推广哪里好
  • wordpress百度数据seo服务哪家好
  • 张家港网站建设门店百度下载安装最新版
  • 网站域名过期未续费怎么办网站seo优化发布高质量外链
  • 宝塔本地wordpressseo常用工具有哪些
  • 做植物网站优化网站seo
  • 东莞做网站多少钱网络宣传怎么做
  • 一个域名可以做两个网站么优秀的营销策划案例
  • 3322做网站百度知道首页登录入口
  • 网站设计专业毕业论文网站收录
  • 影响seo排名的因素中国seo网站
  • b2b的典型网站济南竞价托管
  • 重庆企业网站推广流程网络推广工具有哪些
  • 杭州网站建设 双收网络营销专业
  • 楼梯 技术支持 东莞网站建设新浪疫情实时数据
  • vps服务器的iis网站全媒体运营师培训机构
  • 长宁长沙网站建设长春网站关键词推广
  • seo网站设计外包google推广 的效果
  • iis 没有右键网站属性百度建站官网
  • 建站优化办事效率高日本域名注册
  • 2万元最简单装修小红书关键词排名优化
  • 建设股票交易网站百度智能小程序怎么优化排名
  • 网站与网站做外链好吗百度网络科技有限公司
  • 提高网站互动性免费com网站域名注册
  • 做cms网站步骤谷歌广告
  • 怎么找网站帮我做推广网站seo教材