当前位置: 首页 > news >正文

最专业网站建设开发seo去哪学

最专业网站建设开发,seo去哪学,网站建设域名申请,网站制作制作网站建网站目录 创建工程 加载数据 分析属性 创建与评估回归模型 线性回归 回归树 评估 完整代码 结论 本节将通过分析能源效率数据集(Tsanas和Xifara,2012)学习基本的回归算法。我们将基 于建筑的结构特点(比如表面、墙体与屋顶面…

目录

创建工程

加载数据

分析属性

创建与评估回归模型

线性回归

回归树

评估

完整代码

结论


本节将通过分析能源效率数据集(TsanasXifara2012)学习基本的回归算法。我们将基 于建筑的结构特点(比如表面、墙体与屋顶面积、高度、紧凑度)研究它们的加热与冷却负载要 求。研究者使用一个模拟器设计了12种不同的房屋配置,这些房屋配置通过改变18种建筑特征得 出,他们总共模拟了768种建筑。

我们的首要目标是系统分析每种建筑特征对目标变量——加热或冷却负载——产生的影响。 第二个目标是比较经典线性回归模型相对于其他方法(比如SVM回归、随机森林、神经网络)的 性能。这个任务中,我们将使用Weka库。

创建工程

接着使用上一篇文章的工程:

加载数据

        // 加载数据CSVLoader loader = new CSVLoader();loader.setFieldSeparator(",");  // 设置CSV文件的字段分隔符为逗号loader.setSource(new File(PATH));  // 设置数据源为CSV文件Instances data = loader.getDataSet();  // 从CSV文件中加载数据集

分析属性

进行属性分析之前,先了解要处理什么。总共有8个属性描述建筑特征,有两个目标变量:

heatingcooling

X1 ——相对密实性
X2 ——表面积
X3 ——墙体面积
X4 ——屋顶面积
X5 ——总体高度
X6 ——方向
X7 ——玻璃窗面积
X8 ——玻璃窗区域分布
Y1 ——加热负载
Y2 ——冷却负载

创建与评估回归模型

首先,在特征位置设置分类属性,为加热负载建立学习模型。第二个目标变量(冷却负载)现在可以移除:

        /** 构建回归模型*/// 设置类别索引为Y1(加热负荷),即目标变量data.setClassIndex(data.numAttributes() - 2);  // 设置类别索引为倒数第二个属性,表示Y1// 移除最后一个属性Y2,因为Y2是另一个目标变量,我们只处理Y1Remove remove = new Remove();remove.setOptions(new String[]{"-R", String.valueOf(data.numAttributes())});  // 移除最后一个属性remove.setInputFormat(data);  // 设置输入格式data = Filter.useFilter(data, remove);  // 应用过滤器,移除最后一个属性

线性回归

首先,使用LinearRegression类创建一个基本的线性回归模型。正如在分类示例中所做的 那样,先初始化一个新模型实例,传递参数与数据,并调用buildClassifier(Instances)方 法:

        // 构建线性回归模型LinearRegression model = new LinearRegression();model.buildClassifier(data);  // 使用数据训练线性回归模型System.out.println(model);  // 输出线性回归模型的详细信息

结果如下:

Y1 =-64.774  * X1 +-0.0428 * X2 +0.0163 * X3 +-0.089  * X4 +4.1699 * X5 +19.9327 * X7 +0.2038 * X8 +83.9329

线性回归模型构建了一个函数,它把输入变量线性组合在一起,对加热负载进行评估。特征 前面的数字解释特征对目标变量的影响:符号表示正面影响或负面影响,而大小对应于影响程度。 比如特征X1(相对紧凑度),它与加热负载是负相关的,而玻璃窗面积与加热负载是正相关的。

这两个特征也对最后加热负载的评估有明显影响。

使用交叉验证技术可以对模型性能做类似评估。 做10折交叉验证(10-fold cross-validation)如下:

        // 10折交叉验证Evaluation evaluation = new Evaluation(data);  // 创建评估对象evaluation.crossValidateModel(model, data, 10, new Random(1), new String[]{});  // 执行10折交叉验证System.out.println(evaluation.toSummaryString());  // 输出交叉验证的概要信息double[] coefficients = model.coefficients();  // 获取线性回归模型的系数

结果如下:

Correlation coefficient                  0.956 
Mean absolute error                      2.0923
Root mean squared error                  2.9569
Relative absolute error                 22.8555 %
Root relative squared error             29.282  %
Total Number of Instances              768     

回归树

另一个方法是构建一组回归模型,每一个模型对应于数据中与其自身相关的部分。图3-5展 示了回归模型与回归树之间的主要不同。回归模型指的是一个与所有数据达到最好拟合的独立模 型;而回归树是一组回归模型,每个模型只对一部分数据进行建模。Weka中的M5类用于实现回归树。创建模型时,遵从步骤与前面一样:初始化模型、传递参 数与数据、调用buildClassifier(Instances)方法。

        // 构建回归树模型(M5P模型)M5P m5p = new M5P();m5p.setOptions(new String[]{""});  // 设置选项,这里为空m5p.buildClassifier(data);  // 使用数据训练M5P回归树模型System.out.println(m5p);  // 输出M5P回归树模型的详细信息

结果如下:

M5 pruned model tree:
(using smoothed linear models)X1 <= 0.75 : 
|   X7 <= 0.175 : 
|   |   X1 <= 0.65 : LM1 (48/1.264%)
|   |   X1 >  0.65 : LM2 (96/3.201%)
|   X7 >  0.175 : 
|   |   X1 <= 0.65 : LM3 (80/3.652%)
|   |   X1 >  0.65 : 
|   |   |   X7 <= 0.325 : LM4 (80/3.724%)
|   |   |   X7 >  0.325 : 
|   |   |   |   X1 <= 0.675 : LM5 (20/1.687%)
|   |   |   |   X1 >  0.675 : 
|   |   |   |   |   X8 <= 2.5 : LM6 (24/1.314%)
|   |   |   |   |   X8 >  2.5 : 
|   |   |   |   |   |   X8 <= 4.5 : LM7 (24/2.737%)
|   |   |   |   |   |   X8 >  4.5 : 
|   |   |   |   |   |   |   X1 <= 0.7 : LM8 (4/0.91%)
|   |   |   |   |   |   |   X1 >  0.7 : LM9 (8/1.265%)
X1 >  0.75 : 
|   X1 <= 0.805 : 
|   |   X7 <= 0.175 : LM10 (48/5.775%)
|   |   X7 >  0.175 : 
|   |   |   X7 <= 0.325 : LM11 (40/5.26%)
|   |   |   X7 >  0.325 : LM12 (40/5.756%)
|   X1 >  0.805 : 
|   |   X7 <= 0.175 : 
|   |   |   X8 <= 1.5 : 
|   |   |   |   X7 <= 0.05 : 
|   |   |   |   |   X2 <= 539 : LM13 (4/0%)
|   |   |   |   |   X2 >  539 : LM14 (12/4.501%)
|   |   |   |   X7 >  0.05 : 
|   |   |   |   |   X1 <= 0.94 : LM15 (12/4.329%)
|   |   |   |   |   X1 >  0.94 : LM16 (4/0.226%)
|   |   |   X8 >  1.5 : 
|   |   |   |   X1 <= 0.94 : LM17 (48/5.693%)
|   |   |   |   X1 >  0.94 : LM18 (16/1.119%)
|   |   X7 >  0.175 : 
|   |   |   X1 <= 0.84 : 
|   |   |   |   X7 <= 0.325 : 
|   |   |   |   |   X8 <= 2.5 : LM19 (8/3.901%)
|   |   |   |   |   X8 >  2.5 : LM20 (12/3.913%)
|   |   |   |   X7 >  0.325 : LM21 (20/5.632%)
|   |   |   X1 >  0.84 : 
|   |   |   |   X7 <= 0.325 : LM22 (60/4.548%)
|   |   |   |   X7 >  0.325 : 
|   |   |   |   |   X3 <= 306.25 : LM23 (40/4.504%)
|   |   |   |   |   X3 >  306.25 : LM24 (20/6.934%)LM num: 1
Y1 = 72.2602 * X1 + 0.0053 * X3 + 41.5669 * X7 - 0.0049 * X8 - 37.6688LM num: 2
Y1 = -14.6772 * X1 + 0.0053 * X3 + 40.2316 * X7 + 0.0181 * X8 + 15.649LM num: 3
Y1 = 84.5112 * X1 + 0.0053 * X3 + 13.9115 * X7 - 0.1471 * X8 - 42.4943LM num: 4
Y1 = -2.8359 * X1 + 0.0053 * X3 + 4.3146 * X7 - 0.0111 * X8 + 12.0357LM num: 5
Y1 = -6.0295 * X1 + 0.0053 * X3 + 4.3146 * X7 - 0.0524 * X8 + 16.0295LM num: 6
Y1 = -4.3262 * X1 + 0.0053 * X3 + 4.3146 * X7 - 0.0665 * X8 + 14.5905LM num: 7
Y1 = -4.3262 * X1 + 0.0053 * X3 + 4.3146 * X7 - 0.0888 * X8 + 14.5832LM num: 8
Y1 = -4.3262 * X1 + 0.0053 * X3 + 4.3146 * X7 - 0.1025 * X8 + 14.5352LM num: 9
Y1 = -0.8154 * X1 + 0.0053 * X3 + 4.3146 * X7 - 0.1025 * X8 + 11.9531LM num: 10
Y1 = 105.9033 * X1 + 0.0113 * X3 + 59.6616 * X7 + 0.0975 * X8 - 58.7462LM num: 11
Y1 = 81.6537 * X1 + 0.0113 * X3 + 10.8932 * X7 + 0.0559 * X8 - 33.0837LM num: 12
Y1 = 64.6565 * X1 + 0.0113 * X3 + 10.8932 * X7 - 0.0337 * X8 - 18.0037LM num: 13
Y1 = 3.2622 * X1 - 0.0018 * X2 + 0.0164 * X3 + 44.6313 * X7 + 0.0592 * X8 + 11.9461LM num: 14
Y1 = 9.1337 * X1 - 0.0018 * X2 + 0.0164 * X3 - 0.0494 * X6 + 44.6313 * X7 + 0.0592 * X8 + 7.321LM num: 15
Y1 = 11.8776 * X1 - 0.0018 * X2 + 0.0164 * X3 - 0.0428 * X6 + 44.6313 * X7 + 0.0592 * X8 + 7.0198LM num: 16
Y1 = 3.2622 * X1 - 0.0018 * X2 + 0.0164 * X3 + 44.6313 * X7 + 0.0592 * X8 + 14.1593LM num: 17
Y1 = 35.1381 * X1 - 0.0018 * X2 + 0.0164 * X3 + 16.7723 * X7 + 0.0592 * X8 - 10.1661LM num: 18
Y1 = 3.2622 * X1 - 0.0018 * X2 + 0.0164 * X3 + 16.7723 * X7 + 0.0592 * X8 + 16.4949LM num: 19
Y1 = 8.5464 * X1 - 0.0012 * X2 + 0.029 * X3 + 15.2851 * X7 - 0.2151 * X8 + 7.86LM num: 20
Y1 = 8.5464 * X1 - 0.0012 * X2 + 0.029 * X3 + 15.2851 * X7 - 0.0475 * X8 + 7.4789LM num: 21
Y1 = 8.5464 * X1 - 0.0012 * X2 + 0.029 * X3 + 15.2851 * X7 + 0.013 * X8 + 8.5537LM num: 22
Y1 = 1.4309 * X1 - 0.0012 * X2 + 0.1248 * X3 + 9.5464 * X7 + 0.0373 * X8 - 10.9927LM num: 23
Y1 = 5.1744 * X1 - 0.0012 * X2 + 0.0633 * X3 + 9.5464 * X7 + 0.0235 * X8 + 5.7355LM num: 24
Y1 = 5.1744 * X1 - 0.0012 * X2 + 0.0761 * X3 + 9.5464 * X7 - 0.0805 * X8 + 3.4386Number of Rules : 24

这棵树总共有13个叶子,每个叶子对应于一个线性方程。

评估

        // 10折交叉验证evaluation = new Evaluation(data);  // 重新创建评估对象evaluation.crossValidateModel(m5p, data, 10, new Random(1), new String[]{});  // 执行10折交叉验证System.out.println(evaluation.toSummaryString());  // 输出交叉验证的概要信息

结果如下:

Correlation coefficient                  0.996 
Mean absolute error                      0.6497
Root mean squared error                  0.9164
Relative absolute error                  7.0972 %
Root relative squared error              9.0753 %
Total Number of Instances              768  

完整代码

    private static String PATH = ClassUtils.getDefaultClassLoader().getResource("ENB2012_data.csv").getPath();public static void main(String[] args) throws Exception {// 加载数据CSVLoader loader = new CSVLoader();loader.setFieldSeparator(",");  // 设置CSV文件的字段分隔符为逗号loader.setSource(new File(PATH));  // 设置数据源为CSV文件Instances data = loader.getDataSet();  // 从CSV文件中加载数据集/** 构建回归模型*/// 设置类别索引为Y1(加热负荷),即目标变量data.setClassIndex(data.numAttributes() - 2);  // 设置类别索引为倒数第二个属性,表示Y1// 移除最后一个属性Y2,因为Y2是另一个目标变量,我们只处理Y1Remove remove = new Remove();remove.setOptions(new String[]{"-R", String.valueOf(data.numAttributes())});  // 移除最后一个属性remove.setInputFormat(data);  // 设置输入格式data = Filter.useFilter(data, remove);  // 应用过滤器,移除最后一个属性// 构建线性回归模型LinearRegression model = new LinearRegression();model.buildClassifier(data);  // 使用数据训练线性回归模型System.out.println(model);  // 输出线性回归模型的详细信息// 10折交叉验证Evaluation evaluation = new Evaluation(data);  // 创建评估对象evaluation.crossValidateModel(model, data, 10, new Random(1), new String[]{});  // 执行10折交叉验证System.out.println(evaluation.toSummaryString());  // 输出交叉验证的概要信息double[] coefficients = model.coefficients();  // 获取线性回归模型的系数// 构建回归树模型(M5P模型)M5P m5p = new M5P();m5p.setOptions(new String[]{""});  // 设置选项,这里为空m5p.buildClassifier(data);  // 使用数据训练M5P回归树模型System.out.println(m5p);  // 输出M5P回归树模型的详细信息// 10折交叉验证evaluation = new Evaluation(data);  // 重新创建评估对象evaluation.crossValidateModel(m5p, data, 10, new Random(1), new String[]{});  // 执行10折交叉验证System.out.println(evaluation.toSummaryString());  // 输出交叉验证的概要信息}

结论

对于线性回归模型:

(1)相关性系数(Correlation coefficient)为0.956,表明模型预测值与实际值之间有较强的相关性。

(2)平均绝对误差(Mean absolute error)为2.0923,表示预测值与实际值之间的平均绝对差距。

(3)均方根误差(Root mean squared error)为2.9569,它衡量了预测值与实际值之间的标准偏差。

(4)相对绝对误差(Relative absolute error)和相对均方根误差(Root relative squared error)分别为22.8555%和29.282%,这些指标是相对于实际值的误差比例。

对于M5模型树:

(1)相关性系数为0.996,比线性回归模型更高,说明M5模型树的预测值与实际值的相关性更强。

(2)平均绝对误差降低到0.6497,表明M5模型树的预测更为准确。

(3)均方根误差也降低到0.9164,说明预测值与实际值的偏差更小。

(4)相对绝对误差和相对均方根误差分别降低到7.0972%和9.0753%,显示M5模型树在相对误差上也有显著改善。

http://www.tj-hxxt.cn/news/46707.html

相关文章:

  • 网站布局方法免费推广引流平台
  • 保定模板做网站怎么制作一个简单的网页
  • 制作一个app软件需要多久怎么seo关键词优化排名
  • 建网站优势游戏推广赚佣金平台
  • 苏州网站设计多少钱域名检测查询
  • 顺德网站建设市场google官网入口手机版
  • 沧州模板建站平台网推怎么推广
  • 泰州市建设工程质量监督站网站关键词优化按天计费
  • 网站后台浏览器seo软件排行榜前十名
  • 服装网站建设论文全渠道营销管理平台
  • 网站域名跳转代码搜狗网站收录入口
  • github迁移wordpress深圳seo专家
  • 网站备案弊端郑州seo顾问
  • 台州做网站是什么北京seo顾问
  • 文化馆网站建设优化网站页面
  • 做公益网站的目的百度小程序入口
  • 软装设计师需要具备的能力seo服务 文库
  • 什么网站可以做游戏机培训机构招生方案范文
  • 三门峡做网站的公司衡水今日头条新闻
  • 动态网站开发实例如何给网站做推广
  • 开网站建设无锡营销型网站建设
  • 登封做网站推广在哪里可以免费自学seo课程
  • 个人建网站要花多少钱佛山seo外包平台
  • dedecms做的网站如何上线2022年新闻摘抄十条
  • 《21天网站建设实录培训网站模板
  • 网站维护中是不是关闭网站了襄阳百度开户
  • 汽车大全官网seo一个关键词多少钱
  • 长沙h5建站企业网络营销成功案例
  • 沧州企业网站建设方案网络营销包括的主要内容有
  • 包头建委网站找不到2023第二波疫情已经到来了吗