当前位置: 首页 > news >正文

辽阳网站建设58深圳百度地图

辽阳网站建设58,深圳百度地图,如何策划一个网站,分销系统一般多少钱算法训练营 day45 动态规划 0-1背包理论 分割等和子集 0-1背包理论 有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。 在下面的讲解中&…

算法训练营 day45 动态规划 0-1背包理论 分割等和子集

0-1背包理论

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

在下面的讲解中,我举一个例子:

背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

二维dp数组

  1. 确定dp数组以及下标的含义

对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

看下面这个图:

在这里插入图片描述

  1. 确定递推公式

再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

那么可以有两个方向推出来dp[i][j],

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

  1. dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0;

在看其他情况。

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

此时dp数组初始化情况如图所示:

在这里插入图片描述

  1. 确定遍历顺序

在如下图中,可以看出,有两个遍历的维度

那么问题来了,先遍历 物品还是先遍历背包重量呢?

其实都可以!! 但是先遍历物品更好理解

要理解递归的本质和递推的方向

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]dp[i - 1][j - weight[i]]推导出来的。

dp[i-1][j]dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

在这里插入图片描述

再来看看先遍历背包,再遍历物品呢,如图:
在这里插入图片描述

大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

  1. 举例推导dp数组

来看一下对应的dp数组的数值,如图:

在这里插入图片描述

class Main {public static void main(String[] args) {int[] weight = {1,3,4};int[] value = {15,20,30};int bagSize = 4;testWeightBagProblem(weight,value,bagSize);}/*** 动态规划获得结果* @param weight  物品的重量* @param value   物品的价值* @param bagSize 背包的容量*/public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){// 创建dp数组int goods = weight.length;  // 获取物品的数量int[][] dp = new int[goods][bagSize + 1];// 初始化dp数组// 创建数组后,其中默认的值就是0for (int j = weight[0]; j <= bagSize; j++) {dp[0][j] = value[0];}// 填充dp数组for (int i = 1; i < weight.length; i++) {for (int j = 1; j <= bagSize; j++) {if (j < weight[i]) {/*** 当前背包的容量都没有当前物品i大的时候,是不放物品i的* 那么前i-1个物品能放下的最大价值就是当前情况的最大价值*/dp[i][j] = dp[i-1][j];} else {/*** 当前背包的容量可以放下物品i* 那么此时分两种情况:*    1、不放物品i*    2、放物品i* 比较这两种情况下,哪种背包中物品的最大价值最大*/dp[i][j] = Math.max(dp[i-1][j] , dp[i-1][j-weight[i]] + value[i]);}}}// 打印dp数组for (int i = 0; i < goods; i++) {for (int j = 0; j <= bagSize; j++) {System.out.print(dp[i][j] + "\t");}System.out.println("\n");}}
}

一维dp数组

对于背包问题其实状态都是可以压缩的。

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

  1. 确定dp数组的定义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

  1. 一维dp数组的递推公式

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 + 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j]

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,

  1. 一维dp数组如何初始化

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

  1. 一维dp数组遍历顺序

二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。

倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!

  1. 举例推导dp数组

一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:

在这里插入图片描述

  public static void main(String[] args) {int[] weight = {1, 3, 4};int[] value = {15, 20, 30};int bagWight = 4;testWeightBagProblem(weight, value, bagWight);}public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){int wLen = weight.length;//定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值int[] dp = new int[bagWeight + 1];//遍历顺序:先遍历物品,再遍历背包容量for (int i = 0; i < wLen; i++){for (int j = bagWeight; j >= weight[i]; j--){dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);}}//打印dp数组for (int j = 0; j <= bagWeight; j++){System.out.print(dp[j] + " ");}}

分割等和子集

416. 分割等和子集 - 力扣(LeetCode)

给你一个 只包含正整数非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

以上分析完,我们就可以套用01背包,来解决这个问题了。

  1. 确定dp数组以及下标的含义

    01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。

    本题中每一个元素的数值既是重量,也是价值。

    套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]

    那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。

  2. 确定递推公式

    01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

    所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

  3. dp数组如何初始化

    在01背包,一维dp如何初始化,已经讲过,

    从dp[j]的定义来看,首先dp[0]一定是0。

    如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。

    这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了

  4. 确定遍历顺序

    如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

  5. 举例推导dp数组

dp[j]的数值一定是小于等于j的。

如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。

用例1,输入[1,5,11,5] 为例,如图:

在这里插入图片描述

最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。

一维dp数组

class Solution {public static boolean canPartition(int[] nums) {int sum = 0;for (int i = 0; i < nums.length; i++) {sum += nums[i];}if(sum % 2 != 0) return false;int target = sum / 2;int[] dp = new int[target+1];for (int i = 0; i < nums.length; i++) {for (int j = target;j>=nums[i];j--) {if (j < nums[i]) {dp[j] = dp[j];} else {dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);}}}return dp[target]==target;}
}

二维dp数组

class Solution {public boolean canPartition(int[] nums) {int sum = 0;for (int i = 0; i < nums.length; i++) {sum += nums[i];}if(sum % 2 != 0) return false;int target = sum / 2;int[][] dp = new int[nums.length][target+1];for (int j = nums[0]; j <= target; j++) {dp[0][j] = nums[0];}for (int i = 1; i < nums.length; i++) {for (int j = 1; j <= target; j++) {if (j < nums[i]) {dp[i][j] = dp[i - 1][j];} else {dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - nums[i]] + nums[i]);}}}return dp[nums.length-1][target]==target;}
}
http://www.tj-hxxt.cn/news/46147.html

相关文章:

  • 生成flash的网站源码软件培训
  • 做商城网站系统seo上海优化
  • 长春做网站公司seo搜索引擎优化总结
  • 小程序商城制作平台惠州百度seo在哪
  • 专门做鞋子的网站有哪些深圳最好seo
  • 服务网站推广方案小红书推广渠道
  • 铜陵58同城做网站谷歌广告投放
  • 常州全景网站制作百度首页登录官网
  • 丽江市建设局网站seo去哪里学
  • 建工网官方网站竞价托管信息
  • 烟草网站建设 限制如何用模板建站
  • 广州市建设交易中心网站首页百度优化seo
  • 为企业做网站赚钱吗seo标题优化是什么意思
  • wordpress 添加标签插件优化百度seo技术搜索引擎
  • 网络服务通知优化大师人工服务电话
  • 上海网站建设公司广州网站建设推广专家
  • 天津大学生专业做网站网页百度
  • 网站设计开发是什么大数据免费查询平台
  • 站点建设网站网奇seo培训官网
  • 过期网站.北京网站seo优化推广
  • 做网络兼职网站有哪些怎么建立一个自己的网站
  • 杭州pc网站制作公司申请域名
  • 推广下载app拿佣金seo群发软件
  • wordpress指定目录文章搜索引擎优化的基本原理
  • 厦门35网站建设公司谷歌浏览器官网入口
  • 网站制作零基础学习公司策划推广
  • 晋江网站建设企业南宁关键词优化软件
  • 合肥网站设计公seo搜索方法
  • 广州seo网站排名优化seo北京网站推广
  • 手机互动网站建设网站推广seo招聘