当前位置: 首页 > news >正文

怎么样做免费网站网站系统开发

怎么样做免费网站,网站系统开发,做网站工作的怎么填职务,帮助做APP的网站公司在对numpy进行了几个小时的学习后,做出如下学习笔记 1. numpy类型入门 写完这边笔记后,过了几天补充一些理解: numpy处理的主要内容是数组,一维的,二维的,三维的,多维的。numpy的数组与python原…

在对numpy进行了几个小时的学习后,做出如下学习笔记

1. numpy类型入门

写完这边笔记后,过了几天补充一些理解:

  1. numpy处理的主要内容是数组,一维的,二维的,三维的,多维的。
  2. numpy的数组与python原生的数组在概念上基本类似,
  3. 但是在函数,方法上有很大区别。很多numpy数组的api,放到python原生数组上是不可用的。

import numpy库后,通过numpy参数操作示例

import numpy as np# 创建ndarray,通过list创建
a = np.array([1, 2, 3])
print(a)
[1 2 3]
# 通过元组创建ndarray,并指定数据类型为float (此处是python的float类型,不是numpy的float类型)
b = np.array((2, 3, 4), dtype=float)
print("值", b, ", 类型", b.dtype)
值 [2. 3. 4.] , 类型 float64
# 创建复数类型
c = np.array([1+2j, 3+4j, 5+6j])
print("value:", c, ", type:", c.dtype)
value: [1.+2.j 3.+4.j 5.+6.j] , type: complex128
d = np.array(["你好", "hello", "world"])
print("value:", d, ", type:", d.dtype)
value: ['你好' 'hello' 'world'] , type: <U5
f = np.array([b"hello", b'world'])
print("value:", f, ", type:", f.dtype)
value: [b'hello' b'world'] , type: |S5

数据类型分为python的类型,与numpy的类型
比如:int_, intc, int8, int16, float16…等等。是numpy的数据类型,在使用是需要有numpy前缀

type01 = np.array([1, 2, 3], dtype = np.int8)
type01
array([1, 2, 3], dtype=int8)

小端与大端:存储时数据头尾与内存前后的关系相反

dt = np.dtype('<u4') # uint32位,小端存储
g = np.array([1, 2, 3], dtype = dt)
print(g, g.dtype)
[1 2 3] uint32

通过astype()可以转换array元素的数据类型,如果转换类型不兼容会报错

h = np.array(["1", "2.3", "4.5"])
ht = h.astype("f4") # f4: float32
ht
array([1. , 2.3, 4.5], dtype=float32)

3. numpy中的几种数组函数

numpy中数组的3个基础函数

  1. arange 数列
  2. linspace 线性等分向量,等差数列
  3. logspace 对数等分向量,等比数列

一些基础概念:

  • 标量:0维数组
  • 向量(矢量):一维数组
  • 矩阵:二维数组
  • 张量:三维以上数组

3.3.1 使用arange函数

arange函数创建数值范围并返回数组对象,与python中range函数类似。语法格式如下:

numpy.arange([start,] stop, [step,] dtype=None)
  • start:开始值,可以省略,默认为0, 开始值包含在数组里
  • stop:结束值,不包含在数组里
  • step:步长,默认值为1,步长可以是负数,表示递减
  • dtype:数组元素类型
a = np.arange(10)
a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
a = np.arange(1, 10, 2)
a
array([1, 3, 5, 7, 9])
a = np.arange(1, -10, -3, dtype=np.float32)
a
array([ 1., -2., -5., -8.], dtype=float32)

3.3.2 等差数列与linspace函数

linsapce函数创建等差数列,语法格式如下:

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
  • start:开始值,包含
  • stop:结束值,默认包含,通过endpoint可以调整是否包含
  • num:生成元素个数
  • endpoint:是否包含stop
  • retstep:是否返回步长(公差),False不返回,True返回。设置为True时,函数返回值是二元数组(数组,步长)
a = np.linspace(0, 10, 10)
a
array([ 0.        ,  1.11111111,  2.22222222,  3.33333333,  4.44444444,5.55555556,  6.66666667,  7.77777778,  8.88888889, 10.        ])
a = np.linspace(0, 10, 10, retstep=True)
a
(array([ 0.        ,  1.11111111,  2.22222222,  3.33333333,  4.44444444,5.55555556,  6.66666667,  7.77777778,  8.88888889, 10.        ]),1.1111111111111112)

当retstep=True时,函数返回内容为二元数组,第一个元素是等差数列,第二个元素是步长

a[1]
1.1111111111111112

3.3.3 等比数列与logspace函数

numpy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)
  • start:开始值,base ** start,base的start次幂
  • stop:结束值,base ** stop, base的stop次幂
  • base:底数,默认以10为底
  • num:生成元素个数
  • endpoint:是否包含stop
a = np.logspace(0, 9, 10)
a
array([1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04, 1.e+05, 1.e+06, 1.e+07,1.e+08, 1.e+09])

1e+1:1乘以10的1次方
ne+x: n乘以10的x次方

a = np.logspace(0, 9, 10, base=2)
a
array([  1.,   2.,   4.,   8.,  16.,  32.,  64., 128., 256., 512.])

3.3.4 练习

  1. 从给定数组里获取奇数
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
arr2 = arr[arr % 2 == 1]
arr2
array([1, 3, 5])
  1. 创建介于2.5到6.5之间的30个均匀间隔元素的一维数组,包括6.5
arr = np.linspace(2.5, 6.5, num=30, endpoint=True, retstep=True)
arr
(array([2.5       , 2.63793103, 2.77586207, 2.9137931 , 3.05172414,3.18965517, 3.32758621, 3.46551724, 3.60344828, 3.74137931,3.87931034, 4.01724138, 4.15517241, 4.29310345, 4.43103448,4.56896552, 4.70689655, 4.84482759, 4.98275862, 5.12068966,5.25862069, 5.39655172, 5.53448276, 5.67241379, 5.81034483,5.94827586, 6.0862069 , 6.22413793, 6.36206897, 6.5       ]),0.13793103448275862)

4. 二维数组

4.1 创建二位数组

a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
a
array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])

4.2 重新设置维度

shape属性可以返回数组的形状,简单理解为:几乘几

a.shape
(3, 3)
数组对象的reshape方法可以修改数组形状
a = np.arange(0, 10)
print("a:", a)
# 将一维数组设置成2行5列的二维数组
a = a.reshape(2, 5)
print("a reshape:", a)b = np.arange(0, 27)
print("b:", b)
# 将一维数组b reshape成3*3*3的三维数组
b = b.reshape(3, 3, 3)
print("b reshape:", b)
a: [0 1 2 3 4 5 6 7 8 9]
a reshape: [[0 1 2 3 4][5 6 7 8 9]]
b: [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 2324 25 26]
b reshape: [[[ 0  1  2][ 3  4  5][ 6  7  8]][[ 9 10 11][12 13 14][15 16 17]][[18 19 20][21 22 23][24 25 26]]]

4.3 更多创建二维数组的方式

  • ones:创建元素都是1的数组
  • zeros:创建元素都是0的数组
  • empty
  • full
  • eye , identity
4.3.1 ones函数根据指定的形状和数据类型生成全为1的数组,语法如下:
numpy.ones(shape, dtype=None)

dtype不指定时,float

a = np.ones((2, 3))
a
array([[1., 1., 1.],[1., 1., 1.]])
a = np.ones((2, 3), dtype=np.int32)
a
array([[1, 1, 1],[1, 1, 1]])
4.3.2 zeros函数,与ones用法类似,区别在于元素值是0
4.3.2 empty函数,与ones用法类似,区别在于元素值是未初始化的

未初始化:内存里保存的是原始值,可能是空,也可能是上一次操作后保留在内存里的值

e = np.empty((2, 3))
e
array([[0., 0., 0.],[0., 0., 0.]])
e = np.empty((3, 7))
e
array([[6.23042070e-307, 4.67296746e-307, 1.69121096e-306,1.29061414e-306, 8.34441742e-308, 8.90104239e-307,1.33511290e-306],[1.42417221e-306, 1.60220393e-306, 1.02359848e-306,3.11525958e-307, 1.69118108e-306, 8.06632139e-308,1.20160711e-306],[1.69119330e-306, 1.29062229e-306, 6.89804133e-307,1.11261162e-306, 8.34443015e-308, 1.42404727e-306,3.39986383e-317]])
上面e = np.empty((3, 7))执行后,e的内容不是0,而是上次内存操作后留下的值
3.3.4 full函数

full函数根据指定的形状和数据类型生成数组,并用指定的数据填充,语法格式如下:

numpy.full(shape, fill_value, dtype=None)
# 创建2行4列,元素value都是10的二维数组
a = np.full((2, 4), 10)
a
array([[10, 10, 10, 10],[10, 10, 10, 10]])
# 创建5个元素的一维数组,每个元素value都是3
a = np.full(5, 3, dtype=np.float32)
a
array([3., 3., 3., 3., 3.], dtype=float32)
4.3.5 identity和eye函数
  1. identity函数用来创建单位矩阵,即:对角线元素为1,其他元素为0的正方形矩阵。
    语法格式如下:
numpy.identity(n, dtype=None)
  1. eye函数用来创建二维数组,对角线元素为1,其他元素为0,
    语法格式如下
numpy.eye(N, M=None, k=0, dtype=float)
  • N:行数
  • M:列数,如果省略,则M=N
  • k:对角线开始位置的索引,默认是0,主对角线。
  • dtype:元素数据类型,默认是float
i = np.identity(3)
i
array([[1., 0., 0.],[0., 1., 0.],[0., 0., 1.]])
e = np.eye(3, 4, 0, dtype=np.int32)
e
array([[1, 0, 0, 0],[0, 1, 0, 0],[0, 0, 1, 0]])
4.3.6 二维数组的轴

简单来说,二维数组的行:0轴,二维数组的列:1轴

x = np.array([['a', 'b', 'c', 'd', 'e'], ['h', 'i', 'j', 'k', 'l'], ['o', 'p', 'q', 'r', 's']])
x
array([['a', 'b', 'c', 'd', 'e'],['h', 'i', 'j', 'k', 'l'],['o', 'p', 'q', 'r', 's']], dtype='<U1')
# 通过轴获取二维数组中对应的元素:
x[2, 3]
# 其实就是几行几列
'r'

4.6 数组转置

数组的T属性可以转置数组,将数组轴的索引倒置。说人话就是行专列,列转行

  • 一维数组转置无意义,转置无效果
  • 形状为(n, m),转置后形状为(m, n)
  • 数组形状为(a0, a1, …, an-1, an),转置后形状为(an, an-1, …, a1, a0)
t1 = np.array([[1, 2, 3], [4, 5, 6]])
t1
array([[1, 2, 3],[4, 5, 6]])
# 使用T属性转置多维数组
t1.T
array([[1, 4],[2, 5],[3, 6]])
http://www.tj-hxxt.cn/news/43226.html

相关文章:

  • 电脑怎么做网站赚钱天津优化加盟
  • 甘南州城乡建设局网站seo服务方案
  • 国外优秀企业网站设计百度搜索排行seo
  • 网站中下滑菜单怎么做百度快速排名软件原理
  • 帮人做网站赚钱seo资源是什么意思
  • 苏州企业网站建设网络服务海淀seo搜索优化多少钱
  • 电商网站开发要哪些技术学校网站建设
  • 免费安装app西安全网优化
  • 福州网站制作怎样我想学做互联网怎么入手
  • 门户网站后台管理系统模板免费开店的电商平台
  • 推广策略是什么seo是什么意思知乎
  • 速成网站怎么做上海公布最新情况
  • 做PPT不错的网站有哪些百度搜索图片
  • 通化市建设工程招投标网站怎么注册网站
  • 做网站商城多少钱佛山seo外包平台
  • wordpress提交后不见了seo关键词的优化技巧
  • 政治建设网站seo工作前景如何
  • 太原网站建设公司网络推广网站程序
  • wordpress后台文章自定义字段面板百家号seo
  • 简单的个人网页制作北京seo公司助力网络营销
  • 东莞建筑建设网站建设微信软文案例
  • 建设网站费用入会计分录搜索引擎关键词优化技巧
  • 建立商务网站步骤软文素材网
  • 海口网站建设策划女装标题优化关键词
  • 晶鹰建设摩托车官网windows优化大师是哪个公司的
  • 中山建设网站品牌策划书
  • 河南工程新希望官网seo数据
  • 多语言网站制作网站推广策划
  • 上海网站建设平台站霸网络中文域名注册官网入口
  • Java电商网站开发百度云湖北seo关键词排名优化软件