当前位置: 首页 > news >正文

辽宁建设工程招标网站谷歌浏览器官网下载

辽宁建设工程招标网站,谷歌浏览器官网下载,中国住房和城乡建设委员会网站,哪个行业最喜欢做网站重要性采样(importance sampling)是一种用于估计概率密度函数期望值的常用蒙特卡罗积分方法。其基本思想是利用一个已知的概率密度函数来生成样本,从而近似计算另一个概率密度函数的期望值。 想从复杂概率分布中采样的一个主要原因是能够使用…

重要性采样(importance sampling)是一种用于估计概率密度函数期望值的常用蒙特卡罗积分方法。其基本思想是利用一个已知的概率密度函数来生成样本,从而近似计算另一个概率密度函数的期望值。

想从复杂概率分布中采样的一个主要原因是能够使用式(11.1)计算期望。重要采样(importance sampling)的方法提供了直接近似期望的框架,但是它本身并没有提供从概率分布 p ( z ) p(z) p(z)中采样的方法,也就是我们无法从式(11.1)直接过渡到(11.2)
E [ f ] = ∫ f ( z ) p ( z ) d z (11.1) \mathbb{E}[f] = \int f(z)p(z)dz \tag{11.1} E[f]=f(z)p(z)dz(11.1) f ^ = 1 L ∑ l = 1 L f ( z ( l ) ) (11.2) \hat{f} = \frac{1}{L}\sum\limits_{l=1}^L f(z^{(l)}) \tag{11.2} f^=L1l=1Lf(z(l))(11.2)公式(11.2)给出的期望的有限和近似依赖于能够从概率分布 p ( z ) p(z) p(z)中采样。然而,假设直接从 p ( z ) p(z) p(z)中采样无法完成,但是对于任意给定的 z z z值,我们可以很容易地计算 p ( z ) p(z) p(z)。一种简单的计算期望的方法是将 z z z空间离散化为均匀的格点,将被积函数使用求和的方式计算,形式为
E [ f ] ≃ ∑ l = 1 L p ( z ( l ) ) f ( z ( l ) ) \mathbb{E}[f] \simeq \sum\limits_{l=1}^Lp(z^{(l)})f(z^{(l)}) E[f]l=1Lp(z(l))f(z(l))这种方法的一个明显的问题是求和式中的项的数量随着 z z z的维度指数增长。此外,正如我们已经注意到的那样,我们感兴趣的概率分布通常将它们的大部分质量限制在 z z z空间的一个很小的区域,因此均匀地采样非常低效,因为在高维的问题中,只有非常小的一部分样本会对求和式产生巨大的贡献。我们希望从 p ( z ) p(z) p(z)的值较大的区域中采样,或理想情况下,从 p ( z ) f ( z ) p(z)f(z) p(z)f(z)的值较大的区域中采样。

与拒绝采样的情形相同,重要采样基于的是对提议分布 q ( z ) q(z) q(z)的使用,我们很容易从提议分布中采样,如下图所示:

重要采样解决的是计算函数 f ( z ) f(z) f(z)关于分布 p ( z ) p(z) p(z)的期望的问题,其中,从 p ( z ) p(z) p(z)中直接采样比较困难。相反,样本 z ( l ) {z^{(l)}} z(l)从一个简单的概率分布 q ( z ) q(z) q(z)中抽取,求和式中的对应项的权值为 p ( z ( l ) ) / q ( z ( l ) ) p(z^{(l)})/q(z^{(l)}) p(z(l))/q(z(l)),这样就可以还原到从 p ( z ) p(z) p(z)中取样。

上述过程中的式子,我们可以通过 q ( z ) q(z) q(z)中的样本 { z ( l ) } \{z^{(l)}\} {z(l)}的有限和的形式来表示期望
E = ∫ f ( z ) p ( z ) d z = ∫ f ( z ) p ( z ) q ( z ) q ( z ) d z ≃ 1 L ∑ l = 1 L p ( z ( l ) ) q ( z ( l ) ) f ( z ( l ) ) \mathbb{E} = \int f(z)p(z)dz \ = \int f(z)\frac{p(z)}{q(z)}q(z)dz \ \simeq \frac{1}{L}\sum\limits_{l=1}^L\frac{p(z^{(l)})}{q(z^{(l)})}f(z^{(l)}) E=f(z)p(z)dz =f(z)q(z)p(z)q(z)dz L1l=1Lq(z(l))p(z(l))f(z(l))其中 r l = p ( z ( l ) ) / q ( z ( l ) ) r_l = p(z^{(l)}) / q(z^{(l)}) rl=p(z(l))/q(z(l))被称为重要性权重(importance weights),修正了由于从错误的概率分布 q ( z ) q(z) q(z)中采样引入的偏差。

对于上述过程,举个栗子:

我们的待计算函数为 h ( x ) = e − 2 ∣ x − 5 ∣ h(x)=e^{-2|x-5|} h(x)=e2∣x5∣,待采样分布为 p ( x ) = 1 10 , x ∼ u ( 0 , 10 ) p(x)=\dfrac{1}{10} ,x \sim\mathcal{u}(0,10) p(x)=101,xu(0,10),从 h ( x ) h(x) h(x)的图像中明显可以看出,在中间部分的 h ( x ) p ( x ) h(x)p(x) h(x)p(x)对期望贡献较大,而两边几乎可以忽略不计,所以此时使用均匀分布采样并不合理。

image-20230428164718557

基于此,我们引入了新的采样分布函数 q ( x ) = 1 2 π e − ( x − 5 ) 2 2 q(x)=\dfrac{1}{\sqrt{2\pi}}e^{-\frac{(x-5)^2}{2}} q(x)=2π 1e2(x5)2

在这里插入图片描述
这使得在 h ( x ) h(x) h(x)较大的位置取值更多,需要的采样点更少。

而更常见的情形是,概率分布 p p p的计算结果没有标准化,也就是 p ( z ) = p ~ ( z ) / Z p p(z) = \tilde{p}(z) / Z_p p(z)=p~(z)/Zp中我们只知道 p ~ ( z ) \tilde{p}(z) p~(z),其中 p ~ ( z ) \tilde{p}(z) p~(z)可以很容易地由 z z z计算出来(可能没有函数表达式),而 Z p Z_p Zp未知( p ~ ( z ) \tilde{p}(z) p~(z)无法积分算)。类似的,我们可能希望使用重要采样分布 q ( z ) = q ~ ( z ) / Z q q(z) = \tilde{q}(z) / Z_q q(z)=q~(z)/Zq中的 q ~ ( z ) \tilde{q}(z) q~(z),它具有相同的性质。于是我们得到:
E [ f ] = ∫ f ( z ) p ( z ) d z = Z q Z p ∫ f ( z ) p ~ ( z ) q ~ ( z ) q ( z ) d z ≃ Z q Z p 1 L ∑ l = 1 L r ~ l f ( z ( l ) ) \mathbb{E}[f] = \int f(z)p(z)dz \ = \frac{Z_q}{Z_p}\int f(z)\frac{\tilde{p}(z)}{\tilde{q}(z)}q(z)dz \ \simeq \frac{Z_q}{Z_p}\frac{1}{L}\sum\limits_{l=1}^L\tilde{r}_lf(z^{(l)}) E[f]=f(z)p(z)dz =ZpZqf(z)q~(z)p~(z)q(z)dz ZpZqL1l=1Lr~lf(z(l))
其中 r ~ l = p ~ ( z ( l ) ) / q ~ ( z ( l ) ) \tilde{r}_l = \tilde{p}(z^{(l)}) / \tilde{q}(z^{(l)}) r~l=p~(z(l))/q~(z(l))

我们还可以使用同样的样本集合来计算比值 Z p / Z q Z_p / Z_q Zp/Zq,结果为:
Z p Z q = 1 Z q ∫ p ~ ( z ) d z = ∫ p ~ ( z ) q ~ ( z ) q ( z ) d z ≃ 1 L ∑ l = 1 L r ~ l \frac{Z_p}{Z_q} = \frac{1}{Z_q}\int\tilde{p}(z)dz = \int\frac{\tilde{p}(z)}{\tilde{q}(z)}q(z)dz \ \simeq \frac{1}{L}\sum\limits_{l=1}^L\tilde{r}_l ZqZp=Zq1p~(z)dz=q~(z)p~(z)q(z)dz L1l=1Lr~l

第一个等式中 Z p Z_p Zp ∫ p ~ ( z ) d z \int\tilde{p}(z)dz p~(z)dz等价计算了出来,第二个等式中 Z q Z_q Zq q ( z ) = q ~ ( z ) / Z q q(z) = \tilde{q}(z) / Z_q q(z)=q~(z)/Zq替代

因此:
E [ f ] ≃ ∑ l = 1 L w l f ( z ( l ) ) \mathbb{E}[f] \simeq \sum\limits_{l=1}^Lw_lf(z^{(l)}) E[f]l=1Lwlf(z(l))其中: w l = r ~ l ∑ m r ~ m = p ~ ( z ( l ) ) / q ( z ( l ) ) ∑ m p ~ ( z ( l ) ) / q ( z ( l ) ) w_l = \frac{\tilde{r}_l}{\sum_m\tilde{r}_m} = \frac{\tilde{p}(z^{(l)})/q(z^{(l)})}{\sum_m\tilde{p}(z^{(l)})/q(z^{(l)})} wl=mr~mr~l=mp~(z(l))/q(z(l))p~(z(l))/q(z(l))
这也就是我们最终要找样本点计算的式子
最终,我们达到了“利用一个已知的概率密度函数 q ( z ) q(z) q(z)来生成样本,从而近似计算另一个概率密度函数的期望值 E [ f ] = ∫ f ( z ) p ( z ) d z \mathbb{E}[f] = \int f(z)p(z)dz E[f]=f(z)p(z)dz”这一目的。

参考:

  1. 【PRML】【模式识别和机器学习】【从零开始的公式推导】11.1.4重要性采样 11.1.5采样-重要性-重采样 11.1.6采样与EM算法
  2. Importance Sampling - VISUALLY EXPLAINED with EXAMPLES!
http://www.tj-hxxt.cn/news/42568.html

相关文章:

  • 无锡嘉饰茂建设网站西安百度关键词优化排名
  • 响应式机械类网站seo整站优化费用
  • 网站建设案例 杭州远大外链网盘下载
  • 可以做网站头像的图片网盘搜索神器
  • 网站实现搜索功能网络营销外包收费
  • 做的比较早的海淘网站12345浏览器网址大全
  • 佛山网站建设正规公司北京seo如何排名
  • 找别人做网站靠谱吗seo的优化策略有哪些
  • 大山子网站建设免费推广的预期效果
  • 想学营销策划去哪里学百度seo搜索引擎优化培训
  • 网站排队队列怎么做百度风云榜小说排行榜
  • 山西网站建设寻找郑州网站优化公司
  • 网站不备案可以使用么企业网站开发多少钱
  • 网站商城微信支付哪里注册域名最便宜
  • 交流平台网站怎么做竞价如何屏蔽恶意点击
  • 疫情实时地图seo网站推广企业
  • easyui 做网站今天重大新闻国内最新消息
  • 抚远佳木斯网站建设视频号关键词搜索排名
  • 自己做采集电影网站传媒网站
  • 国内做网站比较好的公司有哪些宣传推广方式
  • 北京公司网站制作方法国外免费网站域名服务器查询软件
  • 昆山网站优化建设深圳关键词推广优化
  • 怎么才能知道网站是谁做的优化设计电子版
  • 网站制作费用申请东莞seo外包平台
  • 西安企业做网站合肥网站优化排名推广
  • 做外贸怎样免费登录外国网站湖南专业关键词优化
  • 视频教程网站竞价专员是做什么的
  • 建网站都要什么费用个人网站设计欣赏
  • 视频类网站如何做缓存抖音seo代理
  • 模板型网站建设黑帽seo工具