当前位置: 首页 > news >正文

做网站有没有前途重庆百度seo整站优化

做网站有没有前途,重庆百度seo整站优化,中国外贸导航网,曲阳网站建设基本概念 给定输入有为(x,y),其中x表示学习特征,y表示输出,m表示输入总数,有监督学习旨在根据输入建立能够预测可能输出的模型,大致可以分为回归和分类两种,代表可能输出是无限的或…

基本概念

给定输入有为(x,y),其中x表示学习特征,y表示输出,m表示输入总数,有监督学习旨在根据输入建立能够预测可能输出的模型,大致可以分为回归和分类两种,代表可能输出是无限的或是有限可能。

模型

线性回归模型
通过数据集建立回归模型,表现形式为根据数据点建立曲线,如y~=wx+b,用于预测无限可能的数字。
分类模型
少量可能输出的预测,比如图片内容识别,音频字符识别等情况。

基本训练过程为
训练集—学习算法—预测方法

成本函数J

用于衡量建立曲线与数据点的差异大小,即曲线的拟合程度,通过平均误差成本函数实现—
m是为了避免误差随着数据集增大而增大,而除2是为了后续化简,使程序整洁。

构建模型的目的是使成本函数J尽可能小,为了简化,暂时不考虑b。

梯度下降

wb使成本函数最小的方法,也是逐步确定拟合曲线的方法,将参数初始化为0,每次尝试使J减小的方向,可视化如下:
成本函数梯度下降
本质是通过切线找到三维图像的最低点,从任意点开始找wb使成本函数最小的方法如式:


上述两个迭代公式需同步计算,上述步骤不断重复直到收敛,可以实现成本函数不断向局部最小值更新,其中a又称学习率,用于控制上下坡的步幅。

线性回归

用向量分别表示输入x和参数wf(x)=w·x+b,特征多数据大时,传统计算方法耗时很长,故考虑采取其他技术解决。

矢量化

w=np.array([])x=np.array([])生成向量,但计算时不使用循环乘法,二十直接调用f=np.dot(w,x)+b实现点积运算,该方法快于for循环,使用并行硬件,执行快。

梯度下降

w由原有计算式带入可得新w的计算公式
相应的,b的新计算式为
新b的计算公式
这里求导平方的2就和成本函数J分母加的2抵消,使式子简洁。
另外还有法方程法可用,但该方法并不通用,只在这种场景下可以无需迭代求解wb,但梯度下降是通用的方法。

特征缩放

单个特征对J的影响很大时,会导致曲线变化太大,梯度下降来回跳动,无法找到极值点,如下图
单个值太大
此时我们可以选择缩放特性,使整体的特征值大致在同一范围内,使用除法或平均归一化方法。

判断收敛

通过学习曲线检查梯度下降是否收敛,如下图
学习曲线
可以看出随着迭代次数的上升成本函数不断下降并趋于一个固定值,此时可以声明其收敛,但该方法的难度在于确定一个阈值。

选择学习率

太小则计算步骤增多,太大则可能跨过极值点,导致计算永远达不到最小值,需要尝试绘图找到合适的值,在接近最小值后由于偏导变化,步子会自动变小,同样需要尝试根据学习曲线图像选择。
学习曲线2
如果学习曲线上下摆动,则可能是学习率的选择过于大了。

选择特征

可以根据需要创建新特性,如果曲线不能线性拟合,也可以使用特征多项式提高特征次数,获得拟合曲线,在该部分特征缩放显得尤其重要。

logistic回归

用于分类,拟合一条横S曲线,用于二进制的分类,具体公式如下,其中z=w·x+b0<g(z)<1
逻辑回归曲线
图像大致如下:
逻辑回归曲线
该模型输出一个范围0-1的数字,代表分类为1的概率,多用于广告推荐算法,输出概率需设置阈值判定,常见的为0.5,该阈值称为决策边界,也就是z为0时的取值。

损失函数

单个点的损失L表示为:

L(z,y)= -log(z) 	y=1-log(1-z)	y=0

具体含义为,当y=1,预测为真则无损,预测为0则损失极大,y=0相同,预测为1损失极大,预测为0无损,区间的损失用对数函数覆盖。
上述损失可以简化为:
简化损失函数
y=1y=0时带入都可化简为初始式子。

总的损失函数J是所有点损失集合的平均数,表示为:
分类损失函数

梯度下降

w梯度下降

b梯度下降

二者同样需要同时计算,与线性回归的区别只在f(x)上,一个是f=w·x+b,另一个是指数形式1/1+e^(w·x+b)

其他

矢量化,特征缩放,判断收敛等,都与线性回归相同。

正则化

拟合与数据不匹配,称为偏差,拟合符合数据,但变化太多不能适应新数据,称为方差,或过拟合,如下三图分别表示偏差,合格拟合和方差。
拟合示例
解决过拟合的方法有:
1,收集更多数据,更大的训练集可以限制函数,拟合出摆动没那么大的图像
2,减少特征,数据不足但特征过多,易过拟合
3,减少参数大小,惩罚所有特征,可以使函数更平滑,表示公式如图:
正则化成本函数

其中lambda>0,使用正则化成本函数的思想为使w尽可能小。

正则化线性回归梯度下降

原有成本函数梯度下降为:
线性回归w正则化梯度下降
线性回归b正则化梯度下降

正则化logistic回归梯度下降

逻辑回归w正则化梯度下降
逻辑回归b正则化梯度下降

总结

本章学习了监督学习的两种算法,回归和分类,分别用于处理预测无限可能的数字,和有限输出的类型,本质都是通过对已有的数据建立拟合模型来实现,区别在于拟合曲线不同,拟合模型内部通过成本函数来衡量预测结果,每次模型调整又借助梯度下降实现,三者统一完成模型的建立与调整,最后,通过正则化来解决过拟合。

总结的总结,有监督学习的要点:标签、拟合曲线、成本函数、梯度下降、正则化,另外与无监督学习的区别就在于训练集有标签,在特定领域和指定情况效果佳。

另外,正则化之前的函数中分母m2m应该提到最前并改为1/m,修改工作量大偷个小懒。

http://www.tj-hxxt.cn/news/41339.html

相关文章:

  • 展览设计网站有哪些郑州seo排名哪有
  • 拉了专线可以直接做网站吗网页制作源代码
  • 怎么做网站内部搜索功能怎样搭建自己的网站
  • 制作个人网站怎么做网络销售是什么工作内容
  • 企业网站明细费用百度爱采购推广怎么入驻
  • 无锡市网站设计深圳网络推广招聘
  • 湘潭自助建站系统东莞网站建设推广哪家好
  • 网上做问卷调查赚钱哪些网站好百度网址大全官方网站
  • 安阳门户网站磁力蜘蛛搜索引擎
  • 二级域名网站权重微信朋友圈广告怎么推广
  • 正规的佛山网站建设seo公司品牌哪家好
  • 可以做时时彩的网站seo推广学院
  • 淘宝seo是指百度快速seo优化
  • 网站色彩搭配百度知道
  • 网站幻灯片效果怎么制作网页页面
  • 南澳做网站网络服务主要包括
  • 办公室装修工程广州seo成功案例
  • 网站备案 人工审核seo中文意思
  • 郑州做订货网站我想创建一个网络平台
  • 深圳龙华做网站福州网站关键词推广
  • 网站建设宣传册内容枸橼酸西地那非片的作用及功效
  • 百度网站降权廊坊关键词优化排名
  • dedecms仿下拉菜单网站百度文库网页版登录入口
  • 四川疫情第二波最新消息厦门seo百度快照优化
  • 深圳网站建设 独占网络深圳网站建设方案
  • 做网站后台有前途吗推广普通话心得体会
  • 教做美食的视频网站石家庄seo排名公司
  • 学做预算网站网站设计就业
  • 如何搭建购物网站互联网营销师培训内容
  • 品牌网是什么网站外链推广