当前位置: 首页 > news >正文

网站 空间网站开发公司排名

网站 空间,网站开发公司排名,怎么做网站营销策划,网站外包方案🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 CNN的基本架构模块1. 引言2. 卷积层2.1 基本原理2.2 卷积层的特性2.3 卷积层的超…

鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


文章目录

  • CNN的基本架构模块
    • 1. 引言
    • 2. 卷积层
      • 2.1 基本原理
      • 2.2 卷积层的特性
      • 2.3 卷积层的超参数
      • 2.4 输出大小计算
    • 3. 池化层
      • 3.1 目的和作用
      • 3.2 常见的池化方法
      • 3.3 池化层的超参数
    • 4. 激活函数
      • 4.1 作用
      • 4.2 常用的激活函数
      • 4.3 激活函数的选择
    • 5. 全连接层
      • 5.1 作用
      • 5.2 数学表示
      • 5.3 特点
    • 6. Dropout层
      • 6.1 原理
      • 6.2 数学表示
    • 7. 批归一化层(Batch Normalization)
      • 7.1 目的
      • 7.2 数学表示
    • 8. 残差连接(Residual Connection)
      • 8.1 动机
      • 8.2 数学表示
    • 9. 注意力机制(Attention Mechanism)
      • 9.1 原理
      • 9.2 自注意力(Self-Attention)
    • 10. 高级CNN架构
      • 10.1 Inception模块
      • 10.2 DenseNet
      • 10.3 SENet(Squeeze-and-Excitation Network)
    • 11. 结论

CNN的基本架构模块

1. 引言

卷积神经网络(Convolutional Neural Network,CNN)是深度学习中一种强大的神经网络架构,特别适用于处理具有网格状拓扑结构的数据,如图像和时间序列。CNN的成功源于其独特的架构设计,包含了多个精心设计的基本模块。本文将详细介绍CNN的基本架构模块,包括卷积层、池化层、激活函数、全连接层等,以及一些高级组件和优化技术。
在这里插入图片描述

2. 卷积层

在这里插入图片描述

2.1 基本原理

卷积层是CNN的核心组件,负责提取输入数据的局部特征。卷积操作可以表示为:

( f ∗ g ) ( t ) = ∫ − ∞ ∞ f ( τ ) g ( t − τ ) d τ (f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau (fg)(t)=f(τ)g(tτ)dτ

在离散情况下,二维卷积可以表示为:

( I ∗ K ) ( i , j ) = ∑ m ∑ n I ( m , n ) K ( i − m , j − n ) (I * K)(i,j) = \sum_{m}\sum_{n} I(m,n)K(i-m,j-n) (IK)(i,j)=mnI(m,n)K(im,jn)

其中, I I I是输入, K K K是卷积核(或称为滤波器)。

2.2 卷积层的特性

  1. 局部连接:每个神经元只与输入数据的一个局部区域相连。
  2. 权值共享:同一个特征图内的神经元共享相同的权重。
  3. 平移不变性:卷积操作对输入的平移具有不变性。

2.3 卷积层的超参数

  • 卷积核大小:常见的有3x3,5x5等。
  • 步长(Stride):控制卷积核移动的步长。
  • 填充(Padding):在输入周围添加额外的像素。

2.4 输出大小计算

对于输入大小为 W × H W \times H W×H,卷积核大小为 F × F F \times F F×F,步长为 S S S,填充为 P P P 的卷积层,输出大小为:

O W = W − F + 2 P S + 1 , O H = H − F + 2 P S + 1 O_W = \frac{W - F + 2P}{S} + 1, \quad O_H = \frac{H - F + 2P}{S} + 1 OW=SWF+2P+1,OH=SHF+2P+1

3. 池化层

在这里插入图片描述

3.1 目的和作用

池化层用于降低特征图的空间分辨率,减少参数数量和计算量,同时提高模型对小的位移和失真的鲁棒性。

3.2 常见的池化方法

  1. 最大池化(Max Pooling)
    y i j = max ⁡ ( a , b ) ∈ R i j x a b y_{ij} = \max_{(a,b)\in R_{ij}} x_{ab} yij=(a,b)Rijmaxxab

  2. 平均池化(Average Pooling)
    y i j = 1 ∣ R i j ∣ ∑ ( a , b ) ∈ R i j x a b y_{ij} = \frac{1}{|R_{ij}|} \sum_{(a,b)\in R_{ij}} x_{ab} yij=Rij1(a,b)Rijxab

其中, R i j R_{ij} Rij表示池化窗口, ∣ R i j ∣ |R_{ij}| Rij是窗口中元素的数量。

3.3 池化层的超参数

  • 池化窗口大小:常见的有2x2,3x3等。
  • 步长:通常与窗口大小相同,以避免重叠。

4. 激活函数

4.1 作用

激活函数引入非线性,增强网络的表达能力。

4.2 常用的激活函数

  1. ReLU (Rectified Linear Unit)
    f ( x ) = max ⁡ ( 0 , x ) f(x) = \max(0, x) f(x)=max(0,x)

  2. Sigmoid
    f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex1

  3. Tanh
    f ( x ) = e x − e − x e x + e − x f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} f(x)=ex+exexex

  4. Leaky ReLU
    f ( x ) = { x , if  x > 0 α x , otherwise f(x) = \begin{cases} x, & \text{if } x > 0 \\ \alpha x, & \text{otherwise} \end{cases} f(x)={x,αx,if x>0otherwise
    其中 α \alpha α 是一个小的正常数。

4.3 激活函数的选择

  • ReLU 是目前最常用的激活函数,因为它计算简单,能缓解梯度消失问题。
  • Sigmoid 和 Tanh 在某些特定任务中仍有应用,如二分类问题。
  • Leaky ReLU 等变体旨在解决 ReLU 的"死亡 ReLU"问题。

5. 全连接层

5.1 作用

全连接层通常位于CNN的末端,用于将学到的特征映射到样本标记空间。

5.2 数学表示

全连接层的操作可以表示为:

y = f ( W x + b ) y = f(Wx + b) y=f(Wx+b)

其中, W W W 是权重矩阵, b b b 是偏置向量, f f f 是激活函数。

5.3 特点

  • 参数数量大,易导致过拟合。
  • 可以学习特征的全局组合。

6. Dropout层

在这里插入图片描述

6.1 原理

Dropout是一种正则化技术,在训练过程中随机"丢弃"一部分神经元,防止过拟合。

6.2 数学表示

对于dropout率为 p p p 的层,其输出可表示为:

y = f ( r ∗ ( W x + b ) ) / ( 1 − p ) y = f(r * (Wx + b)) / (1-p) y=f(r(Wx+b))/(1p)

其中, r r r 是一个由0和1组成的随机二元掩码,1的概率为 1 − p 1-p 1p

7. 批归一化层(Batch Normalization)

7.1 目的

批归一化通过标准化每一层的输入来加速训练过程,提高模型的稳定性。

7.2 数学表示

对于输入 x x x,批归一化的操作为:

y = γ x − μ B σ B 2 + ϵ + β y = \gamma \frac{x - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} + \beta y=γσB2+ϵ xμB+β

其中, μ B \mu_B μB σ B 2 \sigma_B^2 σB2 分别是批次的均值和方差, γ \gamma γ β \beta β 是可学习的参数, ϵ \epsilon ϵ 是一个小常数。

8. 残差连接(Residual Connection)

8.1 动机

残差连接解决了深层网络的梯度消失问题,使得训练更深的网络成为可能。

8.2 数学表示

对于输入 x x x,残差块的输出为:

y = F ( x ) + x y = F(x) + x y=F(x)+x

其中, F ( x ) F(x) F(x) 是残差函数,通常由几个卷积层组成。

9. 注意力机制(Attention Mechanism)

9.1 原理

注意力机制允许模型在处理输入时关注最相关的部分,提高模型的性能。

9.2 自注意力(Self-Attention)

自注意力机制的计算过程可以表示为:

Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dk QKT)V

其中, Q Q Q K K K V V V 分别是查询、键和值矩阵, d k d_k dk 是键的维度。

10. 高级CNN架构

10.1 Inception模块

Inception模块并行使用不同大小的卷积核,以捕获不同尺度的特征。

10.2 DenseNet

DenseNet通过密集连接提高了特征的重用,减少了参数数量。

10.3 SENet(Squeeze-and-Excitation Network)

SENet引入了通道注意力机制,自适应地调整特征通道的重要性。

11. 结论

CNN的基本架构模块是深度学习在计算机视觉领域取得巨大成功的关键。从最基本的卷积层和池化层,到高级的残差连接和注意力机制,每个组件都在不断演进,以提高模型的性能和效率。理解这些基本模块及其工作原理,对于设计和优化CNN模型至关重要。

随着研究的深入,我们可以期待看到更多创新的架构组件出现,进一步推动CNN在各个领域的应用和发展。同时,如何有效地组合这些模块以构建高效、鲁棒的网络架构,仍然是一个值得深入研究的方向。未来,自动化神经架构搜索(NAS)等技术可能会在这方面发挥重要作用,帮助我们发现更优的网络结构。

End

http://www.tj-hxxt.cn/news/35691.html

相关文章:

  • 自己想做电商怎么入手360优化大师旧版本
  • 怎么打开google网站方法seo
  • nginx wordpress 主题百度seo教程网
  • 广东省医院建设协会网站广东vs北京首钢
  • 深圳自适应网站seo高级教程
  • asp动态网站开发认证模拟判断题手机免费建站系统
  • 琼海做网站口碑新冠疫情最新消息今天
  • 网站的站内结构锚文本是如何做的b站免费建网站
  • 抖音小程序定制开发网站seo置顶 乐云践新专家
  • wordpress用别人主题seo排名培训学校
  • 有域名如何做免费网站广东东莞疫情最新消息今天又封了
  • 白云区同和网站建设cpa推广接单平台
  • 免费做国际网站互联网电商平台有哪些
  • 成人高考成绩查询温州企业网站排名优化
  • 网站建设申请理由万网域名查询
  • wordpress 分类添加图片杭州seo技术培训
  • 网站变慢的原因云优客seo排名公司
  • 青岛网络公司有哪些推荐seo关键词优化
  • 什么网站可以做邮件列表如何在百度上添加店铺的位置
  • 昭阳区建设局网站网页设计制作网站模板
  • php动态网站开发教程发文章用哪个平台比较好
  • 海珠营销网站建设报价合肥seo培训
  • 企业网站手机版模板游戏推广怎么做引流
  • 怎么做游戏网站seo怎么收费的
  • 如何做网站窗口中国旺旺(00151) 股吧
  • 广州哪里有网站建设凡科建站登录
  • 石家庄企业名录大全太原关键词优化报价
  • 做针织衫的网站百度搜索结果优化
  • 蓬莱做网站价格网站排名推广工具
  • 建设局官网查询seo代做