当前位置: 首页 > news >正文

app开发公司哪家好 求推荐荆州seo推广

app开发公司哪家好 求推荐,荆州seo推广,长安做网站,母婴网站建设前言 当今数字时代,图像处理和美化已经变得非常普遍。从社交媒体到个人博客,人们都渴望分享独特且引人注目的图片。本文将介绍如何使用Python编程语言和OpenCV库创建令人印象深刻的卡通风格图像。卡通风格的图像具有艺术性和创意,它们可以用…

前言

当今数字时代,图像处理和美化已经变得非常普遍。从社交媒体到个人博客,人们都渴望分享独特且引人注目的图片。本文将介绍如何使用Python编程语言和OpenCV库创建令人印象深刻的卡通风格图像。卡通风格的图像具有艺术性和创意,它们可以用于图像编辑、创意表达以及增加娱乐价值。

文章目录

    • 前言
      • 1. 准备工作
      • 2. 读取和显示图像
      • 3. 创建边缘掩膜
      • 4. 颜色量化
      • 5. 图像处理和效果增强
      • 6. 完整代码
    • 总结

1. 准备工作

在开始之前,您需要安装以下必要的库:

  • OpenCV (cv2)
  • NumPy

如果您还没有安装这些库,可以使用pip进行安装。

pip install opencv-python numpy

2. 读取和显示图像

首先,我们将介绍如何使用OpenCV读取图像文件并在窗口中显示它们。这是我们处理图像的第一步。

# 读取文件
def read_file(filename: str) -> np.ndarray:try:img = cv2.imread(filename)if img is None:raise ValueError("Invalid file path or file format.")return imgexcept:raise ValueError("Invalid file path or file format.")# 显示图片
def display_image(img: np.ndarray, window_name: str) -> None:cv2.imshow(window_name, img)cv2.waitKey()

在这个步骤中,我们定义了一个名为read_file的函数,它接受一个文件名作为参数,并返回一个NumPy数组表示的图像。如果文件路径无效或图像格式不受支持,函数将引发异常。
我们定义了一个名为display_image的函数,它接受两个参数:要显示的图像和窗口的名称。函数将图像显示在指定的窗口中,并等待用户按下任意键后关闭窗口。这个简单的步骤允许我们在进行后续处理之前,查看原始照片的外观。

3. 创建边缘掩膜

接下来,我们将图像转化为卡通风格的第一步是创建边缘掩膜。我们将使用边缘检测技术来实现这一目标。

# 边缘掩膜
def edge_mask(image: np.ndarray, line_size: int, blur_value: int) -> np.ndarray:if not isinstance(line_size, int) or not isinstance(blur_value, int) or line_size < 1 or blur_value < 1:raise ValueError("Invalid value for 'line_size' or 'blur_value' parameter. Must be a positive integer.")gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)gray_blur = cv2.medianBlur(gray, blur_value)edges = cv2.adaptiveThreshold(gray_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, line_size, blur_value)return edges

在这个步骤中,我们定义了一个名为edge_mask的函数,它接受三个参数:图像、线条大小(控制边缘粗细)和模糊程度。函数将图像转换为灰度图,然后应用中值模糊和自适应阈值处理,以创建边缘掩膜。

4. 颜色量化

卡通风格的图像通常具有较少的颜色。我们将使用K-Means聚类算法来减少图像中的颜色数量。

# 颜色量化
def color_quantization(image: np.ndarray, num_colors: int) -> np.ndarray:if not isinstance(num_colors, int) or num_colors < 1:raise ValueError("Invalid value for 'num_colors' parameter. Must be a positive integer.")# 转换图片data = np.float32(image).reshape((-1, 3))# 设置KMeans聚类参数kmeans_criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 20, 0.001)flags = cv2.KMEANS_RANDOM_CENTERS# 执行KMeans聚类_, labels, centers = cv2.kmeans(data, num_colors, None, kmeans_criteria, 10, flags)centers = np.uint8(centers)processed_image = centers[labels.flatten()]processed_image = processed_image.reshape(image.shape)# 应用颜色增强hsv_image = cv2.cvtColor(processed_image, cv2.COLOR_BGR2HSV)hsv_image[:, :, 1] = hsv_image[:, :, 1] * 1.5  # 增强饱和度enhanced_image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)return enhanced_image

在这个步骤中,我们定义了一个名为color_quantization的函数,它接受两个参数:图像和要使用的颜色数量。函数首先将图像转换为数据矩阵,然后使用K-Means聚类算法将图像颜色量化为指定数量的颜色。最后,我们增强了图像的饱和度,以使颜色更加生动。

5. 图像处理和效果增强

在这一步骤中,我们将应用一些图像处理技术,如双边滤波,以增强最终的卡通效果图像。

def resize_crop(image):h, w, c = np.shape(image)if min(h, w) > 720:if h > w:h, w = int(720 * h / w), 720else:h, w = 720, int(720 * w / h)image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)h, w = (h // 8) * 8, (w // 8) * 8image = image[:h, :w, :]return image# 图像处理和效果增强
def cartoonize(load_folder, save_folder):name_list = os.listdir(load_folder)for name in name_list:try:load_path = os.path.join(load_folder, name)save_path = os.path.join(save_folder, name)if not save_path.endswith('.jpg'):raise ValueError("Invalid file format. Must be a '.jpg' file.")image = cv2.imread(load_path)image = resize_crop(image)display_image(image, "Image")# 设置边缘掩膜参数并应用line_size = 7blur_value = 7edges = edge_mask(image, line_size, blur_value)display_image(edges, "Edges")# 执行颜色量化num_colors = 9processed_image = color_quantization(image, num_colors)display_image(processed_image, "Processed_image")# 应用双边滤波blurred = cv2.bilateralFilter(processed_image, d=9, sigmaColor=200, sigmaSpace=200)display_image(blurred, "Blurred")# 应用掩膜cartoonized_image = cv2.bitwise_and(blurred, blurred, mask=edges)display_image(cartoonized_image, "Cartoonized Image")cv2.imwrite(save_path, cartoonized_image)except:print('cartoonize {} failed'.format(load_path))

在这个步骤中,我们首先调整图像的大小和裁剪,以确保它符合处理的要求。然后,我们依次应用边缘掩膜、颜色量化、双边滤波和最后的掩膜应用,将图像转换成卡通画风。

这是整个卡通化过程的关键部分,通过这些步骤,您可以将任何普通照片转换成具有卡通风格的艺术品。在接下来的文章中,我们将展示如何使用这些代码来卡通化您自己的照片。

6. 完整代码

# -*- coding = utf-8 -*-
"""
# @Time : 2023/9/22 20:18
# @Author : FriK_log_ff 374591069
# @File : newmyway.py
# @Software: PyCharm
# @Function: 请输入项目功能
"""
import cv2
import numpy as np
import os# 读取文件
def read_file(filename: str) -> np.ndarray:try:img = cv2.imread(filename)if img is None:raise ValueError("Invalid file path or file format.")return imgexcept:raise ValueError("Invalid file path or file format.")# 显示图片
def display_image(img: np.ndarray, window_name: str) -> None:cv2.imshow(window_name, img)cv2.waitKey()# 边缘掩膜
def edge_mask(image: np.ndarray, line_size: int, blur_value: int) -> np.ndarray:if not isinstance(line_size, int) or not isinstance(blur_value, int) or line_size < 1 or blur_value < 1:raise ValueError("Invalid value for 'line_size' or 'blur_value' parameter. Must be a positive integer.")gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)gray_blur = cv2.medianBlur(gray, blur_value)edges = cv2.adaptiveThreshold(gray_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, line_size, blur_value)return edges# 颜色量化
def color_quantization(image: np.ndarray, num_colors: int) -> np.ndarray:if not isinstance(num_colors, int) or num_colors < 1:raise ValueError("Invalid value for 'num_colors' parameter. Must be a positive integer.")# 转换图片data = np.float32(image).reshape((-1, 3))# 设置KMeans聚类参数kmeans_criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 20, 0.001)flags = cv2.KMEANS_RANDOM_CENTERS# 执行KMeans聚类_, labels, centers = cv2.kmeans(data, num_colors, None, kmeans_criteria, 10, flags)centers = np.uint8(centers)processed_image = centers[labels.flatten()]processed_image = processed_image.reshape(image.shape)# 应用颜色增强hsv_image = cv2.cvtColor(processed_image, cv2.COLOR_BGR2HSV)hsv_image[:, :, 1] = hsv_image[:, :, 1] * 1.5  # 增强饱和度enhanced_image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)return enhanced_imagedef resize_crop(image):h, w, c = np.shape(image)if min(h, w) > 720:if h > w:h, w = int(720 * h / w), 720else:h, w = 720, int(720 * w / h)image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)h, w = (h // 8) * 8, (w // 8) * 8image = image[:h, :w, :]return image# 上传文件
def cartoonize(load_folder, save_folder):name_list = os.listdir(load_folder)for name in name_list:try:load_path = os.path.join(load_folder, name)save_path = os.path.join(save_folder, name)if not save_path.endswith('.jpg'):raise ValueError("Invalid file format. Must be a '.jpg' file.")image = cv2.imread(load_path)image = resize_crop(image)display_image(image, "Image")# 设置边缘掩膜参数并应用line_size = 7blur_value = 7edges = edge_mask(image, line_size, blur_value)display_image(edges, "Edges")# 执行颜色量化num_colors = 9processed_image = color_quantization(image, num_colors)display_image(processed_image, "Processed_image")# 应用双边滤波blurred = cv2.bilateralFilter(processed_image, d=9, sigmaColor=200, sigmaSpace=200)display_image(blurred, "Blurred")# 应用掩膜cartoonized_image = cv2.bitwise_and(blurred, blurred, mask=edges)display_image(cartoonized_image, "Cartoonized Image")cv2.imwrite(save_path, cartoonized_image)except:print('cartoonize {} failed'.format(load_path))if __name__ == '__main__':load_folder = 'test_images'save_folder = 'cartoonized_images'if not os.path.exists(save_folder):os.mkdir(save_folder)cartoonize(load_folder, save_folder)

总结

在本文中,我们探讨了如何使用Python和OpenCV库创建卡通风格的图像。通过一系列图像处理步骤,我们将普通照片转化为有趣和具有创意的卡通风格图像。这个过程涵盖了图像读取、边缘检测、颜色量化、图像处理和效果增强等关键步骤。

卡通风格图像的制作涉及多个步骤,但通过掌握这些技巧,您可以自由发挥创造力,为照片增添新的趣味性。以下是本文中使用的一些关键技术的简要回顾:

  • 图像读取和显示: 我们使用OpenCV库来读取图像文件并在窗口中显示它们。这是开始图像处理的第一步。

  • 边缘掩膜: 为了创建卡通风格,我们使用了边缘检测技术,将图像中的边缘突出显示。

  • 颜色量化: 卡通图像通常包含较少的颜色。我们使用K-Means聚类来减少图像中的颜色数量,从而实现卡通风格的色彩。

  • 图像处理和效果增强: 我们应用了一些图像处理技术,例如双边滤波,以增强最终的卡通效果图像。

在完成所有处理步骤后,我们得到了有趣和独特的卡通风格图像。这个过程可以批量处理图像,使您能够轻松创建多个卡通化的照片。

希望本文对您有所帮助,能够启发您探索更多有趣的图像处理项目。 创造自己独特的卡通风格图像,让您的照片在社交媒体和网络上脱颖而出。

http://www.tj-hxxt.cn/news/34082.html

相关文章:

  • 拼多多网站建设的目的2022最新时事新闻及点评
  • 在哪家网站上可以找到加工活做徐州seo推广优化
  • 广州网站优化网站建设大数据营销名词解释
  • 网站维护需要多长时间百度搜索引擎优化公司哪家强
  • 龙岗区住房和建设局官方网站windows7优化大师下载
  • 新乡营销型网站建设一份完整的营销策划书
  • 织梦网站2个模型百度推广账号登陆入口
  • 建站的方式有哪些免费友情链接网
  • 门户网站建设情况总结广州新一期lpr
  • 贷款网站建设中国经济网人事
  • 互联网公司薪酬体系seo自学教程
  • 番禺网站建设百度seo通科
  • 本地电脑做服务器建网站自己如何建立网站
  • 个人网页包括哪些内容seo学途论坛网
  • 做视频网站带宽不够怎么办深圳龙华区大浪社区
  • 厦门做手机网站公司免费顶级域名注册
  • 网站内容的设计自助建站系统下载
  • 张家港做网站公司百度关键词挖掘工具
  • 外贸平台推广公司西安企业seo
  • 旅游网站建设的可行性分析免费发广告网站
  • 手机网站搭建用什么软件?爱站网长尾词挖掘
  • 做网站必须要购买空间吗免费建站平台
  • 网站建设 国家技术规范seo收索引擎优化
  • pinboard wordpress绍兴seo排名收费
  • 自己做的网站怎么设置地址河北seo平台
  • 网站前后台高端网站制作
  • wordpress 多层分类建网站seo
  • 郑州市政府网站官网免费网络营销平台
  • 预定型网站有哪些永久观看不收费的直播
  • 网站设计高端关键词查找的方法有以下几种